Правильная 3 угольная пирамида. Азы геометрии: правильная пирамида — это

Определение

Пирамида – это многогранник, составленный из многоугольника \(A_1A_2...A_n\) и \(n\) треугольников с общей вершиной \(P\) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
Обозначение: \(PA_1A_2...A_n\) .
Пример: пятиугольная пирамида \(PA_1A_2A_3A_4A_5\) .

Треугольники \(PA_1A_2, \ PA_2A_3\) и т.д. называются боковыми гранями пирамиды, отрезки \(PA_1, PA_2\) и т.д. – боковыми ребрами , многоугольник \(A_1A_2A_3A_4A_5\) – основанием , точка \(P\) – вершиной .

Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида, в основании которой лежит треугольник, называется тетраэдром .

Пирамида называется правильной , если в ее основании лежит правильный многоугольник и выполнено одно из условий:

\((a)\) боковые ребра пирамиды равны;

\((b)\) высота пирамиды проходит через центр описанной около основания окружности;

\((c)\) боковые ребра наклонены к плоскости основания под одинаковым углом.

\((d)\) боковые грани наклонены к плоскости основания под одинаковым углом.

Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

Теорема

Условия \((a), (b), (c), (d)\) эквивалентны.

Доказательство

Проведем высоту пирамиды \(PH\) . Пусть \(\alpha\) – плоскость основания пирамиды.


1) Докажем, что из \((a)\) следует \((b)\) . Пусть \(PA_1=PA_2=PA_3=...=PA_n\) .

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники – прямоугольные. Значит, эти треугольники равны по общему катету \(PH\) и гипотенузам \(PA_1=PA_2=PA_3=...=PA_n\) . Значит, \(A_1H=A_2H=...=A_nH\) . Значит, точки \(A_1, A_2, ..., A_n\) находятся на одинаковом расстоянии от точки \(H\) , следовательно, лежат на одной окружности с радиусом \(A_1H\) . Эта окружность по определению и есть описанная около многоугольника \(A_1A_2...A_n\) .

2) Докажем, что из \((b)\) следует \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\) .

3) Докажем, что из \((c)\) следует \((a)\) .

Аналогично первому пункту треугольники \(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Докажем, что из \((b)\) следует \((d)\) .

Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то \(H\) – центр вписанной окружности. Проведем перпендикуляры из точки \(H\) на стороны основания: \(HK_1, HK_2\) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП (\(PH\) – перпендикуляр на плоскость, \(HK_1, HK_2\) и т.д. – проекции, перпендикулярные сторонам) наклонные \(PK_1, PK_2\) и т.д. перпендикулярны сторонам \(A_1A_2, A_2A_3\) и т.д. соответственно. Значит, по определению \(\angle PK_1H, \angle PK_2H\) равны углам между боковыми гранями и основанием. Т.к. треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по двум катетам), то и углы \(\angle PK_1H, \angle PK_2H, ...\) равны.

5) Докажем, что из \((d)\) следует \((b)\) .

Аналогично четвертому пункту треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по катету и острому углу), значит, равны отрезки \(HK_1=HK_2=...=HK_n\) . Значит, по определению, \(H\) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то \(H\) – центр описанной окружности. Чтд.

Следствие

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Определение

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .
Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

Важные замечания

1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

Определение

Пирамида называется прямоугольной , если одно ее боковое ребро перпендикулярно плоскости основания.


Важные замечания

1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть \(SR\) – высота.

2. Т.к. \(SR\) перпендикулярно любой прямой из основания, то \(\triangle SRM, \triangle SRP\) – прямоугольные треугольники.

3. Треугольники \(\triangle SRN, \triangle SRK\) – тоже прямоугольные.
То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

\[{\Large{\text{Объем и площадь поверхности пирамиды}}}\]

Теорема

Объем пирамиды равен трети произведения площади основания на высоту пирамиды: \

Следствия

Пусть \(a\) – сторона основания, \(h\) – высота пирамиды.

1. Объем правильной треугольной пирамиды равен \(V_{\text{прав.треуг.пир.}}=\dfrac{\sqrt3}{12}a^2h\) ,

2. Объем правильной четырехугольной пирамиды равен \(V_{\text{прав.четыр.пир.}}=\dfrac13a^2h\) .

3. Объем правильной шестиугольной пирамиды равен \(V_{\text{прав.шест.пир.}}=\dfrac{\sqrt3}{2}a^2h\) .

4. Объем правильного тетраэдра равен \(V_{\text{прав.тетр.}}=\dfrac{\sqrt3}{12}a^3\) .

Теорема

Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

\[{\Large{\text{Усеченная пирамида}}}\]

Определение

Рассмотрим произвольную пирамиду \(PA_1A_2A_3...A_n\) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида (\(PB_1B_2...B_n\) ), а другой называется усеченная пирамида (\(A_1A_2...A_nB_1B_2...B_n\) ).


Усеченная пирамида имеет два основания – многоугольники \(A_1A_2...A_n\) и \(B_1B_2...B_n\) , которые подобны друг другу.

Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

Важные замечания

1. Все боковые грани усеченной пирамиды – трапеции.

2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

Введение

Когда мы начали изучать стереометрические фигуры мы затронули тему «Пирамида». Нам понравилась это тема, потому что пирамида очень часто употребляется в архитектуре. И так как наша будущая профессия архитектора, вдохновившись этой фигурой, мы думаем, что она сможет подтолкнуть нас к отличным проектам.

Прочность архитектурных сооружений, важнейшее их качество. Связывая прочность, во-первых, с теми материалами, из которых они созданы, а, во-вторых, с особенностями конструктивных решений, оказывается, прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой.

Другими словами, речь идет о той геометрической фигуре, которая может рассматриваться как модель соответствующей архитектурной формы. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения.

Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.

Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.



Цель проекта : узнать что-то новое о пирамидах, углубить знания и найти практическое применение.

Для достижения поставленной цели потребовалось решить следующие задачи:

· Узнать исторические сведения о пирамиде

· Рассмотреть пирамиду, как геометрическую фигуру

· Найти применение в жизни и архитектуре

· Найти сходство и различие пирамид, расположенных в разных частях света


Теоретическая часть

Исторические сведения

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

Усыпальницы египетских фараонов. Крупнейшие из них - пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.


Основные понятия

Пирамидой называется многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины;

Боковые грани - треугольники, сходящиеся в вершине;

Боковые ребра - общие стороны боковых граней;

Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания;

Основание - многоугольник, которому не принадлежит вершина пирамиды.

Основные свойства правильной пирамиды

Боковые ребра, боковые грани и апофемы соответственно равны.

Двугранные углы при основании равны.

Двугранные углы при боковых ребрах равны.

Каждая точка высоты равноудалена от всех вершин основания.

Каждая точка высоты равноудалена от всех боковых граней.


Основные формулы пирамиды

Площадь боковой и полной поверхности пирамиды.

Площадью боковой поверхности пирамиды (полной и усечённой) называется сумма площадей всех ее боковых граней, площадью полной поверхности – сумма площадей всех ее граней.

Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

p - периметр основания;

h - апофема.

Площадь боковой и полной поверхностей усеченной пирамиды.

p 1 , p 2 - периметры оснований;

h - апофема.

Р - площадь полной поверхности правильной усеченной пирамиды;

S бок - площадь боковой поверхности правильной усеченной пирамиды;

S 1 + S 2 - площади основания

Объем пирамиды

Формула объёма используется для пирамид любого вида.

H - высота пирамиды.


Углы пирамиды

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол образуется двумя перпендикулярами.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах .

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания .

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды .


Сечения пирамиды

Поверхность пирамиды – это поверхность многогранника. Каждая ее грань представляет собой плоскость, поэтому сечение пирамиды, заданной секущей плоскостью – это ломаная линия, состоящая из отдельных прямых.

Диагональное сечение

Сечение пирамиды плоскостью, проходящей через два боковых ребра, не лежащих на одной грани, называется диагональным сечением пирамиды.

Параллельные сечения

Теорема :

Если пирамида пересечена плоскостью, параллельной основанию, то боковые ребра и высоты пирамиды делятся этой плоскостью на пропорциональные части;

Сечением этой плоскости является многоугольник, подобный основанию;

Площади сечения и основания относятся друг к другу как квадраты их расстояний от вершины.

Виды пирамиды

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, и вершина пирамиды проектируется в центр основания.

У правильной пирамиды:

1. боковые ребра равны

2. боковые грани равны

3. апофемы равны

4. двугранные углы при основании равны

5. двугранные углы при боковых ребрах равны

6. каждая точка высоты равноудалена от всех вершин основания

7. каждая точка высоты равноудалена от всех боковых граней

Усеченная пирамида – часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Основание и соответствующие сечение усеченной пирамиды называются основаниями усеченной пирамиды .

Перпендикуляр, проведенный из какой-либо точки одного основания на плоскость другого, называется высотой усеченной пирамиды.


Задачи

№1. В правильной четырехугольной пирамиде точка О – центр основания, SO=8 cм, BD=30 см. Найдите боковое ребро SA.


Решение задач

№1. В правильной пирамиде все грани и ребра равны.

Рассмотрим OSB: OSB-прямоугольный прямоугольник, т. к.

SB 2 =SO 2 +OB 2

SB 2 =64+225=289

Пирамида в архитектуре

Пирамида - монументальное сооружение в форме обычной правильной геометрической пирамиды, в которой боковые стороны сходятся в одной точке. По функциональному назначению пирамиды в древности были местом захоронения или поклонения культу. Основа пирамиды может быть треугольной, четырехугольной или в форме многоугольника с произвольным числом вершин, но наиболее распространенной версией является четырехугольная основа.

Известно немалое количество пирамид, построенных разными культурами Древнего мира в основном в качестве храмов или монументов. К крупным пирамидам относятся египетские пирамиды.

По всей Земле можно увидеть архитектурные сооружения в виде пирамид. Здания-пирамиды напоминают о древних временах и очень красиво выглядят.

Египетские пирамиды величайшие архитектурные памятники Древнего Египта, среди которых одно из «Семи чудес света» пирамида Хеопса. От подножия до вершины она достигает 137, 3 м, а до того, как утратила верхушку, высота ее была 146, 7 м

Здание радиостанции в столице Словакии, напоминающее перевернутую пирамиду, было построено в 1983 г. Помимо офисов и служебных помещений, внутри объема находится достаточно вместительный концертный зал, который имеет один из самых больших органов в Словакии.

Лувр, который "молчит неизменно и величественно, как пирамида" на протяжении веков перенёс немало изменений прежде, чем превратиться в величайший музей мира. Он родился как крепость, воздвигнутая Филиппом Августом в 1190 г., вскоре превратившаяся в королевскую резиденцию. В 1793 г. дворец становится музеем. Коллекции обогащаются благодаря завещаниям или покупкам.

Гипотеза: мы считаем, что совершенство формы пирамиды обусловлено математическими законами, заложенными в ее форму.

Цель: изучив пирамиду как геометрическое тело, дать объяснение совершенству ее формы.

Задачи:

1. Дать математическое определение пирамиде.

2. Изучить пирамиду как геометрическое тело.

3. Понять, какие математические знания египтяне заложили в своих пирамидах.

Частные вопросы:

1. Что представляет собой пирамида как геометрическое тело?

2. Как можно объяснить уникальность формы пирамиды с математической точки зрения?

3. Чем объясняются геометрические чудеса пирамиды?

4. Чем объясняется совершенство формы пирамиды?

Определение пирамиды.

ПИРАМИДА (от греч. pyramis, род. п. pyramidos) - многогранник, основание которого многоугольник, а остальные грани - треугольники, имеющие общую вершину (рисунок). По числу углов основания различают пирамиды треугольные, четырехугольные и т. д.

ПИРАМИДА - монументальное сооружение, имеющее геометрическую форму пирамиды (иногда также ступенчатую или башнеобразную). Пирамидами называют гигантские гробницы древнеегипетских фараонов 3-2-го тыс. до н. э., а также древнеамериканские постаменты храмов (в Мексике, Гватемале, Гондурасе, Перу), связанные с космологическими культами.

Возможно, что греческое слово “пирамида” происходит от египетского выражения per-em-us т. е. от термина, означавшего высоту пирамиды. Выдающийся русский египтолог В. Струве полагал, что греческое “puram…j” происходит от древнеегипетского “p"-mr” .

Из истории . Изучив материал в учебнике “Геометрия” авторов Атанасяна. Бутузова и др., мы узнали, что: Многогранник, составленный из п - угольника А1А2А3 … Аn и п треугольников РА1А2, РА2А3, …, РАnА1 – называется пирамидой. Многоугольник А1А2А3 … Аn – основание пирамиды, а треугольники РА1А2, РА2А3, …, РАnА1 – боковые грани пирамиды, Р – вершина пирамиды, отрезки РА1, РА2,…, РАn – боковые ребра.

Однако такое определение пирамиды существовало не всегда. Например, древнегреческий математик, автор дошедших до нас теоретических трактатов по математике Евклид, пирамиду определяет как телесную фигуру, ограниченную плоскостями, которые от одной плоскости сходятся к одной точке.

Но это определение подвергалось критике уже в древности. Так Герон предложил следующее определение пирамиды: “Это фигура, ограниченная треугольниками, сходящимися в одной точке и основанием которой служит многоугольник”.

Наша группа, сравнив эти определения, пришла к выводу о том, что в них нет четкой формулировки понятия “основание”.

Мы исследовали эти определения и нашли определение Адриена Мари Лежандра, который в 1794 году в своем труде “Элементы геометрии” пирамиду определяет так: “Пирамида – телесная фигура, образованная треугольниками, сходящимися в одной точке и заканчивающаяся на различных сторонах плоского основания”.

Нам кажется, что последнее определение дает четкое представление о пирамиде, так как в нем идет речь о том, что основание - плоское. В учебнике 19 века фигурировало еще одно определение пирамиды: “пирамида – телесный угол, пересеченный плоскостью”.

Пирамида как геометрическое тело.

Т. о. пирамидой называется многогранник, одна из граней которого(основание) - многоугольник, остальные грани (боковые) - треугольники, имеющие одну общую вершину (вершину пирамиды).

Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотой h пирамиды.

Помимо произвольной пирамиды, существуют правильная пирамида, в основании которой правильный многоугольник и усеченная пирамида.

На рисунке – пирамида PABCD, ABCD – ее основание, PO – высота.

Площадью полной поверхности пирамиды называется сумма площадей всех ее граней.

Sполн = Sбок + Sосн, где Sбок – сумма площадей боковых граней.

Объём пирамиды находится по формуле:

V=1/3Sосн.h , где Sосн. - площадь основания, h - высота.

Осью правильной пирамиды называется прямая, содержащая её высоту.
Апофема ST - высота боковой грани правильной пирамиды.

Площадь боковой грани правильной пирамиды выражается так: Sбок. =1/2P h , где Р - периметр основания, h - высота боковой грани (апофема правильной пирамиды). Если пирамида пересечена плоскостью A’B’C’D’, параллельной основанию, то:

1) боковые рёбра и высота делятся этой плоскостью на пропорциональные части;

2) в сечении получается многоугольник A’B’C’D’, подобный основанию;

https://pandia.ru/text/78/390/images/image017_1.png" width="287" height="151">

Основания усеченной пирамиды – подобные многоугольники ABCD и A`B`C`D`, боковые грани – трапеции.

Высота усеченной пирамиды – расстояние между основаниями.

Объем усеченной пирамиды находится по формуле:

V=1/3 h (S + https://pandia.ru/text/78/390/images/image019_2.png" align="left" width="91" height="96"> Площадь боковой поверхности правильной усеченной пирамиды выражается так: Sбок. = ½(P+P’)h , где P и P’- периметры оснований, h - высота боковой грани (апофема правильной усеченной пирами

Сечения пирамиды.

Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники.

Сечение, проходящее через два несоседних боковых ребра пирамиды, называется диагональным сечением.

Если сечение проходит через точку на боковом ребре и сторону основания, то его следом на плоскость основания пирамиды будет эта сторона.

Сечение, проходящее через точку, лежащую на грани пирамиды, и заданный след сечения на плоскость основания, то построение надо проводить так:

· находят точку пересечения плоскости данной грани и следа сечения пирамиды и обозначают её;

· строят прямую проходящую через заданную точку и полученную точку пересечения;

· повторяют эти действия и для следующих граней.

, что отвечает отношению катетов прямоугольного треугольника 4:3. Такое отношение катетов соответствует хорошо известному прямоугольному треугольнику со сторонами 3:4:5, который называют "совершенным", "священным" или "египетским" треугольником. По свидетельству историков, "египетскому" треугольнику придавали магический смысл. Плутарх писал, что египтяне сравнивали природу Вселенной со "священным" треугольником; они символически уподобляли вертикальный катет мужу, основание - жене, а гипотенузу - тому, что рождается от обоих.

Для треугольника 3:4:5 справедливо равенство: 32 + 42 = 52, которое выражает теорему Пифагора. Не эту ли теорему хотели увековечить египетские жрецы, возводя пирамиду на основе треугольника 3:4:5? Трудно найти более удачный пример для иллюстрации теоремы Пифагора, которая была известна египтянам задолго до ее открытия Пифагором.

Таким образом, гениальные создатели египетских пирамид стремились поразить далеких потомков глубиной своих знаний, и они достигли этого, выбрав в качестве "главной геометрической идеи" для пирамиды Хеопса - "золотой" прямоугольный треугольник, а для пирамиды Хефрена - "священный" или "египетский" треугольник.

Очень часто в своих исследованиях учёные используют свойства пирамид с пропорциями Золотого сечения.

В математическом энциклопедическом словаре даётся следующее определение Золотого сечения – это гармоническое деление, деление в крайнем и среднем отношении – деление отрезка АВ на две части таким образом, что большая его часть АС является средним пропорциональным между всем отрезком АВ и меньшей его частью СВ.

Алгебраическое нахождение Золотого сечения отрезка АВ = а сводится к решению уравнения а: х = х: (а – х), откуда х приблизительно равно 0,62а. Отношение х можно выразить дробями 2/3, 3/5, 5/8, 8/13, 13/21…= 0,618, где 2, 3, 5, 8, 13, 21 – числа Фибоначчи.

Геометрическое построение Золотого сечения отрезка АВ осуществляется так: в точке В восстанавливается перпендикуляр к АВ, на нём откладывают отрезок ВЕ = 1/2 АВ, соединяют А и Е, откладывают ДЕ = ВЕ и, наконец, АС = АД, тогда выполняется равенство АВ: СВ = 2: 3.

Золотое сечение часто применяется в произведениях искусства, архитектуры, встречается в природе. Яркими примерами являются скульптура Аполлона Бельведерского, Парфенон. При строительстве Парфенона использовалось отношение высоты здания к его длине и это отношение равно 0,618. Окружающие нас предметы также дают примеры Золотого сечения, например, переплеты многих книг имеют отношение ширины и длины близкое к 0,618. Рассматривая расположение листьев на общем стебле растений, можно заметить, что между каждыми двумя парами листьев третья расположена в месте Золотого сечения (слайды). Каждый из нас “носит” Золотое сечение с собой “в руках” - это отношение фаланг пальцев.

Благодаря находке нескольких математических папирусов, египтологи узнали кое-что о древнеегипетских системах исчисления и мер. Содержавшиеся в них задачи решались писцами. Одним из самых известных является «Риндский математический папирус». Изучая эти задачки, египтологи узнали, как древние египтяне справлялись с различными количествами, возникавшими при вычислении мер веса, длины и объема, в которых часто использовались дроби, а также как они управлялись с углами.

Древние египтяне использовали способ вычисления углов на основе отношения высоты к основанию прямоугольного треугольника. Они выражали любой угол на языке градиента. Градиент склона выражался отношением целого числа, называвшимся «секед». В книге «Математика во времена фараонов» Ричард Пиллинс объясняет: «Секед правильной пирамиды - это наклон любой из четырех треугольных граней к плоскости основания, измеряемый энным числом горизонтальных единиц на одну вертикальную единицу подъема. Таким образом, эта единица измерения эквивалентна нашему современному котангенсу угла наклона. Следовательно, египетское слово «секед» родственно нашему современному слову «градиент»».

Числовой ключ к пирамидам заключен в отношении их высоты к основанию. В практическом плане - это наилегчайший способ изготовления шаблонов, необходимых для постоянной проверки правильности угла наклона на протяжении всего строительства пирамиды.

Египтологи были бы рады убедить нас в том, что каждый фараон жаждал выразить свою индивидуальность, оттого и различия углов наклона для каждой пирамиды. Но могла быть и другая причина. Возможно, все они желали воплотить разные символические ассоциации, скрытые в различных пропорциях. Однако угол пирамиды Хафры (основанный на треугольнике (3: 4: 5) проявляется в трех проблемах представленных пирамидами в «Риндском математическом папирусе»). Так что это отношение было хорошо известно древним египтянам.

Дабы быть справедливыми к египтологам, утверждающим, что древним египтянам не был известен треугольник 3: 4: 5, скажем, что длина гипотенузы 5 никогда не упоминалась. Но математические задачи, касающиеся пирамид, всегда решаются на основе секеда угла - отношения высоты к основанию. Поскольку же длина гипотенузы никогда не упоминалась, был сделан вывод, что египтяне так никогда и не вычислили длину третьей стороны.

Отношения высоты к основанию, использованные в пирамидах Гизы, несомненно, были известны древним египтянам. Возможно, что эти отношения для каждой пирамиды были выбраны произвольно. Однако это противоречит тому значению, которое придавалось числовому символизму во всех видах египетского изобразительного искусства. Весьма вероятно, что такие отношения имели существенное значение, поскольку выражали конкретные религиозные идеи. Иными словами, весь комплекс Гизы подчинялся связному замыслу, призванному отобразить некую божественную тему. Это объяснило бы, почему проектировщики выбрали разные углы наклона трех пирамид.

В «Тайне Ориона» Бьювэл и Джилберт представили убедительные доказательства связи пирамид Гизы с созвездием Ориона, в частности со звездами Пояса Ориона, Это же созвездие присутствует в мифе об Исиде и Осирисе, и есть основания рассматривать каждую пирамиду как изображение одного из трех главных божеств - Осириса, Исиды и Гора.

ЧУДЕСА "ГЕОМЕТРИЧЕСКИЕ".

Среди грандиозных пирамид Египта особое место занимает Великая Пирамида фараона Хеопса (Хуфу) . Прежде чем приступить к анализу формы и размеров пирамиды Хеопса, следует вспомнить, какой системой мер пользовались египтяне. У египтян было три единицы длины: "локоть" (466 мм), равнявшийся семи "ладоням" (66,5 мм), которая, в свою очередь, равнялась четырем "пальцам" (16,6 мм).

Проведем анализ размеров пирамиды Хеопса (Рис.2), следуя рассуждениям, приведенным в замечательной книге украинского ученого Николая Васютинского "Золотая пропорция" (1990 г.).

Большинство исследователей сходятся в том, что длина стороны основания пирамиды, например, GF равна L = 233,16 м. Эта величина отвечает почти точно 500 "локтям". Полное соответствие 500 "локтям" будет, если длину "локтя" считать равной 0,4663 м.

Высота пирамиды (H ) оценивается исследователями различно от 146,6 до 148,2 м. И в зависимости от принятой высоты пирамиды изменяются все отношения ее геометрических элементов. В чем причина различий в оценке высоты пирамиды? Дело в том, что, строго говоря, пирамида Хеопса является усеченной. Ее верхняя площадка в наши дни имеет размер примерно 10 ´ 10 м, а столетие назад она была равна 6 ´ 6 м. Очевидно, что вершину пирамиды разобрали, и она не отвечает первоначальной.

Оценивая высоту пирамиды, необходимо учитывать такой физический фактор, как "осадка" конструкции. За длительное время под воздействием колоссального давления (достигающего 500 тонн на 1 м2 нижней поверхности) высота пирамиды уменьшилась по сравнению с первоначальной высотой.

Какой же была первоначальная высота пирамиды? Эту высоту можно воссоздать, если найти основную "геометрическую идею" пирамиды.


Рисунок 2.

В 1837 г. Английский полковник Г. Вайз измерил угол наклона граней пирамиды: он оказался равным a = 51°51". Эта величина и сегодня признается большинством исследователей. Указанному значению угла отвечает тангенс (tg a ), равный 1,27306. Эта величина соответствует отношению высоты пирамиды АС к половине ее основания CB (Рис.2), то есть AC / CB = H / (L / 2) = 2H / L .

И вот здесь исследователей ожидал большой сюрприз!.png" width="25" height="24">= 1,272. Сравнивая эту величину с величиной tg a = 1,27306, мы видим, что эти величины очень близки между собой. Если же принять угол a = 51°50", то есть уменьшить его всего на одну угловую минуту, то величина a станет равной 1,272, то есть совпадет с величиной . Следует отметить, что в 1840 г. Г. Вайз повторил свои измерения и уточнил, что значение угла a =51°50".

Эти измерения привели исследователей к следующей весьма интересной гипотезе: в основу треугольника АСВ пирамиды Хеопса было заложено отношение AC / CB = = 1,272!

Рассмотрим теперь прямоугольный треугольник ABC , в котором отношение катетов AC / CB = (Рис.2). Если теперь длины сторон прямоугольника ABC обозначить через x , y , z , а также учесть, что отношение y /x = , то в соответствии с теоремой Пифагора, длина z может быть вычислена по формуле:

Если принять x = 1, y = https://pandia.ru/text/78/390/images/image027_1.png" width="143" height="27">


Рисунок 3. "Золотой" прямоугольный треугольник.

Прямоугольный треугольник, в котором стороны относятся как t :золотым" прямоугольным треугольником.

Тогда, если принять за основу гипотезу о том, что основной "геометрической идеей" пирамиды Хеопса является "золотой" прямоугольный треугольник, то отсюда легко можно вычислить "проектную" высоту пирамиды Хеопса. Она равна:

H = (L/2) ´ = 148,28 м.

Выведем теперь некоторые другие отношения для пирамиды Хеопса, вытекающие из "золотой" гипотезы. В частности найдем отношение внешней площади пирамиды к площади ее основания. Для этого примем длину катета CB за единицу, то есть: CB = 1. Но тогда длина стороны основания пирамиды GF = 2, а площадь основания EFGH будет равна SEFGH = 4.

Вычислим теперь площадь боковой грани пирамиды Хеопса SD . Поскольку высота AB треугольника AEF равна t , то площадь боковой грани будет равна SD = t . Тогда суммарная площадь всех четырех боковых граней пирамиды буде равна 4t , а отношение суммарной внешней площади пирамиды к площади основания будет равно золотой пропорции! Это и есть - главная геометрическая тайна пирамиды Хеопса !

В группу "геометрических чудес" пирамиды Хеопса можно отнести реальные и надуманные свойства отношений между различными измерениями в пирамиде.

Как правило, они получены в поисках неких "постоянных", в частности, числа "пи" (лудольфово число), равного 3,14159...; основания натуральных логарифмов "е" (Неперово число), равного 2,71828...; числа "Ф", числа "золотого сечения", равного, например, 0,618... и т. д..

Можно назвать, например: 1) Свойство Геродота: (Высота)2 = 0,5 ст. осн. х Апофема; 2) Свойство В. Прайса: Высота: 0.5 ст. осн = Корень квадратный из "Ф"; 3) Свойство М. Эйста: Периметр основания: 2 Высота = "Пи"; в иной интерпретации - 2 ст. осн. : Высота = "Пи"; 4) Свойство Г. Ребера: Радиус вписанной окружности: 0,5 ст. осн. = "Ф"; 5) Свойство К. Клеппиша: (Ст. осн.)2: 2(ст. осн. х Апофема) = (ст. осн. У. Апофема) = 2(ст. осн. х Апофема) : ((2 ст. осн. X Апофема) + (ст. осн.)2). И - тому подобное. Свойств таких можно придумать множество, особенно если подключить соседние две пирамиды. Например, в качестве "Свойства А. Арефьева" можно упомянуть, что разность объемов пирамиды Хеопса и пирамиды Хефрена равна удвоенному объему пирамиды Микерина...

Многие интересные положения, в частности, о построении пирамид по "золотому сечению" изложены в книгах Д. Хэмбидж "Динамическая симметрия в архитектуре" и М. Гика "Эстетика пропорции в природе и искусстве". Напомним, что "золотым сечением" называется деление отрезка в таком отношении, когда часть А во столько раз больше части В, во сколько раз А меньше всего отрезка А + В. Отношение А/В при этом равно числу "Ф"==1,618... Указывается на использование "золотого сечения" не только в отдельных пирамидах, но и во всем комплексе пирамид в Гизе.

Самое любопытное, однако, то, что одна и та же пирамида Хеопса просто "не может" вместить в себя столько чудесных свойств. Взяв некое свойство поодиночке, его можно "подогнать", но все разом они не подходят - не совпадают, противоречат друг другу. Поэтому, если, например, при проверке всех свойств, брать исходно одну и ту же сторону основания пирамиды (233 м), то высоты пирамид с разными свойствами также будут разными. Иными словами, существует некое "семейство" пирамид, внешне сходных с Хеопсовой, но отвечающих разным свойствам. Заметим, что в "геометрических" свойствах ничего особо чудесного нет - многое возникает чисто автоматически, из свойств самой фигуры. "Чудом" же следует считать лишь что-то явно невозможное для древних египтян. Сюда, в частности, относят "космические" чудеса, в которых измерения пирамиды Хеопса или комплекса пирамид в Гизе сопоставляются с некоторыми астрономическими измерениями и указываются "ровные" числа: в миллион раз, в миллиард раз меньше, и так далее. Рассмотрим некоторые "космические" соотношения.

Одно из утверждений таково: "если разделить сторону основания пирамиды на точную длину года, то получим в точности 10-миллионную долю земной оси". Вычисли: разделим 233 на 365, получим 0,638. Радиус же Земли 6378 км.

Другое утверждение фактически обратно предыдущему. Ф. Ноэтлинг указывал, что если воспользоваться придуманным им самим "египетским локтем", то сторона пирамиды будет соответствовать "самой точной продолжительности солнечного года, выраженной с точностью до одной миллиардной дня" - 365.540.903.777.

Утверждение П. Смита: "Высота пирамиды составляет ровно одну миллиардную долю расстояния от Земли до Солнца". Хотя обычно берется высота 146,6 м, Смит брал ее 148,2 м. По современным же радиолокационным измерениям большая полуось земной орбиты составляет 149,597.870 + 1,6 км. Таково среднее расстояние от Земли до Солнца, но в перигелии оно на 5.000.000 километров меньше, чем в афелии.

Последнее любопытное утверждение:

"Чем объяснить, что массы пирамид Хеопса, Хефрена и Микерина относятся друг к другу, как массы планет Земля, Венера, Марс?" Вычислим. Массы трех пирамид относятся как: Хефрена - 0,835; Хеопса - 1,000; Микерина - 0,0915. Отношения масс трех планет: Венера - 0,815; Земля - 1,000; Марс - 0,108.

Итак, несмотря на скепсис, отметим известную стройность построения утверждений: 1) высота пирамиды, как линия, "уходящая в пространство" - соответствует расстоянию от Земли до Солнца; 2) сторона основания пирамиды, ближайшая "к субстрату", то есть к Земле, отвечает за земной радиус и земное обращение; 3) объемы пирамиды (читай - массы) отвечают отношению масс ближайших к Земле планет. Похожий "шифр" прослеживается, например, в пчелином языке, проанализированном Карлом фон Фришем. Впрочем, воздержимся пока от комментариев по этому поводу.

ФОРМА ПИРАМИД

Знаменитая четырехгранная форма пирамид возникла не сразу. Скифы делали захоронения в виде земляных холмов - курганов. Египтяне ставили "холмы" из камня - пирамиды. Впервые это случилось после объединения Верхнего и Нижнего Египта, в XXVIII веке до нашей эры, когда перед основателем III династии фараоном Джосером (Зосером) стояла задача укрепления единства страны.

И здесь, по мнению историков, важную роль в укреплении центральной власти сыграла "новая концепция обоготворения" царя. Хотя царские погребения и отличались большей пышностью, они в принципе не отличались от гробниц придворных вельмож , представляли собой одни и те же сооружения - мастабы. Над камерой с саркофагом, содержащим мумию, насыпался прямоугольный холм из мелких камней, где ставилось затем небольшое здание из крупных каменных блоков - "мастаба" (по-арабски - "скамья"). На месте мастаба своего предшественника, Санахта, фараон Джосер и поставил первую пирамиду. Была она ступенчатой и являлась зримым переходным этапом от одной архитектурной формы к другой, от мастабы - к пирамиде.

Таким способом "возвысил" фараона мудрец и архитектор Имхотеп, считавшийся впоследствии волшебником и отождествляемый греками с богом Асклепием. Были воздвигнуты как бы шесть мастаб подряд. Причем первая пирамида занимала площадь 1125 х 115 метров, с предположительной высотой 66 метров (по египетским мерам - 1000 "ладоней"). Сперва архитектор замышлял построить мастабу, но не продолговатую, а квадратную в плане. Позже ее расширили, но, поскольку пристройку сделали ниже, образовалось как бы две ступени.

Такая ситуация не удовлетворила архитектора, и на верхней площадке огромной плоской мастабы Имхотеп поставил еще три, постепенно уменьшающихся к верху. Усыпальница находилась под пирамидой.

Известно еще несколько ступенчатых пирамид, но в дальнейшем строители перешли к постройке более привычных для нас четырехгранных пирамид. Почему же, однако, не трехгранных или, скажем, восьмигранных? Косвенный ответ дает тот факт, что практически все пирамиды великолепно сориентированы по четырем сторонам света, поэтому и имеют четыре стороны. К тому же пирамида была "домом", оболочкой четырехугольного погребального помещения.

Но чем был обусловлен угол наклона граней? В книге "Принцип пропорций" этому посвящена целая глава: "Что могло обусловить углы наклонов пирамид". В частности, указывается, что "образ, к которому тяготеют великие пирамиды Древнего царства - треугольник с прямым углом в вершине.

В пространстве это полуоктаэдр: пирамида, в которой ребра и стороны основания равны, грани - равносторонние треугольники". Определенные рассмотрения даны по этому поводу в книгах Хэмбиджа, Гика и других.

Чем выгоден угол полуоктаэдра? Согласно описаниям археологов и историков, некоторые пирамиды обвалились под собственной тяжестью. Нужен был "угол долговечности", угол, наиболее энергетически надежный. Чисто эмпирически этот угол можно взять из вершинного угла в куче осыпающегося сухого песка. Но чтобы получить точные данные, нужно воспользоваться моделью. Взяв четыре прочно закрепленных шара, нужно положить на них пятый и измерить углы наклона. Впрочем, и здесь можно ошибиться, поэтому выручает теоретический расчет: следует соединить линиями центры шаров (мысленно). В основании получится квадрат со стороной, равной удвоенному радиусу. Квадрат будет как раз основанием пирамиды, длина ребер которой также будет равна удвоенному радиусу.

Таким образом плотная упаковка шаров по типу 1: 4 даст нам правильный полуоктаэдр.

Однако, почему же многие пирамиды, тяготея к подобной форме, тем не менее не сохраняют ее? Вероятно, пирамиды стареют. Вопреки знаменитой поговорке:

"Все в мире страшится времени, а время страшится пирамид", постройки пирамид должны стареть, в них могут и должны происходить нс только процессы внешнего выветривания, но и процессы внутренней "усадки", от чего пирамиды, возможно, становятся ниже. Усадка возможна и потому, что, как выяснено работами Д. Давидовица, древние египтяне применяли технологию изготовления блоков из известковой крошки, проще говоря, из "бетона". Именно подобные процессы могли бы объяснить причину разрушения Медумской пирамиды, расположенной в 50 км южнее Каира. Ей 4600 лет, размеры основания 146 х 146 м, высота - 118м. "Отчего она так изуродована? - спрашивает В. Замаровский. - Обычные ссылки на губительное воздействие времени и "использование камня для других построек" тут не подходят.

Ведь большинство ее блоков и облицовочных плит и поныне осталось на месте, в развалинах у ее подножия". Как увидим, ряд положений заставляет задуматься даже над тем, что и знаменитая пирамида Хеопса тоже "усохла". Во всяком случае на всех древних изображениях пирамиды остроконечны...

Форму пирамид могло породить и подражание: неким природным образцам, "нерукотворному совершенству", скажем, неких кристаллов в виде октаэдра.

Подобными кристаллами могли оказаться кристаллы алмаза и золота. Характерно большое количество "пересекающихся" признаков для таких понятий, как Фараон, Солнце, Золото, Алмаз. Везде - благородный, блистающий (блистательный), великий, безупречный и так далее. Сходства не случайны.

Солнечный культ, как известно, составлял важную часть религии Древнего Египта. "Как бы мы ни переводили название величайшей из пирамид, - отмечается в одном из современных пособий - "Небосклон Хуфу" или "Небосклонный Хуфу", оно означало, что царь есть солнце". Если Хуфу в блеске своего могущества возомнил себя вторым солнцем, то его сын Джедеф-Ра стал первым из египетских царей, кто стал именовать себя "сыном Ра", то есть сыном Солнца. Солнце же практически у всех народов символизировалось "солнечным металлом", золотом. "Большой диск яркого золота" - так египтяне называли наше дневное светило. Золото египтяне знали превосходно, знали его самородные формы, где кристаллы золота могут представать в виде октаэдров.

Как "образец форм" интересен здесь и "солнечный камень" - алмаз. Название алмаза пришло как раз из арабского мира, "алмас" - самый твердый, наитвердейший, несокрушимый. Древние египтяне знали алмаз и его свойства весьма неплохо. Согласно некоторым авторам они даже использовали для бурения бронзовые трубки с алмазными резцами.

Ныне основным поставщиком алмазов является Южная Африка, но алмазами богата и Африка Западная. Территорию Республики Мали там именуют даже "Алмазным краем". Меж тем именно на территории Мали проживают догоны, с которыми сторонники гипотезы палеовизита связывают немало надежд (см. далее). Алмазы не могли послужить причиной контактов древних египтян с этим краем. Однако, так или иначе, но, возможно, что именно копируя октаэдры кристаллов алмаза и золота, древние египтяне обожествляли тем самым "несокрушимых" как алмаз и "блистательных" как золото фараонов, сынов Солнца, сравнимых лишь с самыми чудесными творениями природы.

Вывод:

Изучив пирамиду как геометрическое тело, познакомившись с ее элементами и свойствами, мы убедились в справедливости мнения о красоте формы пирамиды.

В результате наших исследований мы пришли к выводу, что египтяне, собрав самые ценные математические знания, воплотили их в пирамиде. Поэтому пирамида поистине – самое совершенное творение природы и человека.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

«Геометрия: Учеб. для 7 – 9 кл. общеобразоват. учреждений \ , и др. – 9-е изд.- М.: Просвещение, 1999

История математики в школе, М: «Просвещение», 1982 г.

Геометрия 10-11 класс, М: «Просвещение», 2000 г.

Питер Томпкинс «Тайны великой пирамиды Хеопса»,М: «Центрополиграф»,2005 г.

Интернет – ресурсы

http://veka-i-mig. *****/

http://tambov. *****/vjpusk/vjp025/rabot/33/index2.htm

http://www. *****/enc/54373.html

С понятием пирамида учащиеся сталкиваются еще задолго до изучения геометрии. Виной всему знаменитые великие египетские чудеса света. Поэтому, начиная изучение этого замечательного многогранника, большинство учеников уже наглядно представляют ее себе. Все вышеупомянутые достопримечательности имеют правильную форму. Что такое правильная пирамида , и какие свойства она имеет и пойдет речь дальше.

Вконтакте

Определение

Определений пирамиды можно встретить достаточно много. Начиная еще с древних времен, она пользовалась большой популярностью.

К примеру, Эвклид определял ее как телесную фигуру, состоящую из плоскостей, которые, начиная от одной, сходятся в определенной точке.

Герон представил более точную формулировку. Он настаивал на том, что это фигура, которая имеет основание и плоскости в виде треугольников, сходящиеся в одной точке.

Опираясь на современное толкование, пирамиду представляют, как пространственный многогранник, состоящий из определённого k-угольника и k плоских фигур треугольной формы, имеющую одну общую точку.

Разберемся более подробно, из каких элементов она состоит:

  • k-угольник считают основой фигуры;
  • фигуры 3-угольной формы выступают гранями боковой части;
  • верхняя часть, из которой берут начало боковые элементы, называют вершиной;
  • все отрезки, соединяющие вершину, называют рёбрами;
  • если из вершины на плоскость фигуры опустить прямую под углом в 90 градусов, то её часть, заключенная во внутреннем пространстве — высота пирамиды;
  • в любом боковом элементе к стороне нашего многогранника можно провести перпендикуляр, называемый апофемой.

Число рёбер вычисляется по формуле 2*k, где k – количество сторон k-угольника. Сколько граней у такого многогранника, как пирамида, можно определить посредством выражения k+1.

Важно! Пирамидой правильной формы называют стереометрическую фигуру, плоскость основы которой является k-угольник с равными сторонами.

Основные свойства

Правильная пирамида обладает множеством свойств, которые присущи только ей. Перечислим их:

  1. Основа – фигура правильной формы.
  2. Ребра пирамиды, ограничивающие боковые элементы, имеют равные числовые значения.
  3. Боковые элементы – равнобедренные треугольники.
  4. Основание высоты фигуры попадает в центр многоугольника, при этом он одновременно является центральной точкой вписанной и описанной .
  5. Все боковые рёбра наклонены к плоскости основы под одинаковым углом.
  6. Все боковые поверхности имеют одинаковый угол наклона по отношению к основе.

Благодаря всем перечисленным свойствам, выполнение вычислений элементов намного упрощается. Исходя из приведенных свойств, обращаем внимание на два признака:

  1. В том случае, когда многоугольник вписывается в окружность, боковые грани будут иметь с основой равные углы.
  2. При описании окружности около многоугольника, все рёбра пирамиды, исходящие из вершины, будут иметь равную длину и равные углы с основой.

В основе лежит квадрат

Правильная четырёхугольная пирамида – многогранник, у которого в основе лежит квадрат.

У неё четыре боковых грани, которые по своему виду являются равнобедренными.

На плоскости квадрат изображают , но основываются на всех свойствах правильного четырёхугольника.

К примеру, если необходимо связать сторону квадрата с его диагональю, то используют следующую формулу: диагональ равна произведению стороны квадрата на корень квадратный из двух.

В основе лежит правильный треугольник

Правильная треугольная пирамида – многогранник, в основании которого лежит правильный 3-угольник.

Если основание является правильным треугольником, а боковые рёбра равны ребрам основания, то такая фигура называется тетраэдром.

Все грани тетраэдра являются равносторонними 3-угольниками. В данном случае необходимо знать некоторые моменты и не тратить на них время при вычислениях:

  • угол наклона ребер к любому основанию равен 60 градусов;
  • величина всех внутренних граней также составляет 60 градусов;
  • любая грань может выступить основанием;
  • , проведённые внутри фигуры, это равные элементы.

Сечения многогранника

В любом многограннике различают несколько видов сечения плоскостью. Зачастую в школьном курсе геометрии работают с двумя:

  • осевое;
  • параллельное основе.

Осевое сечение получают при пересечении плоскостью многогранника, которая проходит через вершину, боковые рёбра и ось. В данном случае осью является высота, проведённая из вершины. Секущая плоскость ограничивается линиями пересечения со всеми гранями, в результате получаем треугольник.

Внимание! В правильной пирамиде осевым сечением является равнобедренный треугольник.

Если секущая плоскость проходит параллельно основанию, то в результате получаем второй вариант. В этом случае имеем в разрезе фигуру, подобную основе.

К примеру, если в основании лежит квадрат, то сечение параллельно основе также будет квадратом, только меньших размеров.

При решении задач при таком условии используют признаки и свойства подобия фигур, основанные на теореме Фалеса . В первую очередь необходимо определить коэффициент подобия.

Если плоскость проведена параллельно основе, и она отсекает верхнюю часть многогранника, то в нижней части получают правильную усеченную пирамиду. Тогда говорят, что основы усеченного многогранника являются подобными многоугольниками. В этом случае боковые грани являются равнобокими трапециями. Осевым сечением также является равнобокая .

Для того чтобы определить высоту усеченного многогранника, необходимо провести высоту в осевом сечении, то есть в трапеции.

Площади поверхностей

Основные геометрические задачи, которые приходится решать в школьном курсе геометрии, это нахождение площадей поверхности и объема у пирамиды.

Значение площади поверхности различают двух видов:

  • площади боковых элементов;
  • площади всей поверхности.

Из самого названия понятно, о чём идёт речь. Боковая поверхность включает в себя только боковые элементы. Из этого следует, что для ее нахождения необходимо просто сложить площади боковых плоскостей, то есть площади равнобедренных 3-угольников. Попробуем вывести формулу площади боковых элементов:

  1. Площадь равнобедренного 3-угольника равна Sтр=1/2(aL), где а – сторона основания, L – апофема.
  2. Количество боковых плоскостей зависит от вида k-го угольника в основании. К примеру, правильная четырехугольная пирамида имеет четыре боковые плоскости. Следовательно, необходимо сложить площади четырёх фигур Sбок=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4а*L. Выражение упрощено таким способом потому, что значение 4а=Росн, где Росн – периметр основы. А выражение 1/2*Росн является её полупериметром.
  3. Итак, делаем вывод, что площадь боковых элементов правильной пирамиды равна произведению полупериметра основания на апофему: Sбок=Росн*L.

Площадь полной поверхности пирамиды состоит из суммы площадей боковых плоскостей и основания: Sп.п.= Sбок+Sосн.

Что касается площади основания, то здесь формула используется соответственно виду многоугольника.

Объем правильной пирамиды равен произведению площади плоскости основания на высоту, разделенную на три: V=1/3*Sосн*Н, где Н – высота многогранника.

Что такое правильная пирамиды в геометрии

Свойства правильной четырехугольной пирамиды

Видеоурок 2: Задача на пирамиду. Объем пирамиды

Видеоурок 3: Задача на пирамиду. Правильная пирамида

Лекция: Пирамида, её основание, боковые рёбра, высота, боковая поверхность; треугольная пирамида; правильная пирамида

Пирамида, её свойства

Пирамида – это объемное тело, которое имеет в основании многоугольник, а все её грани состоят из треугольников.

Частным случаем пирамиды является конус, в основании которого лежит окружность.


Рассмотрим основные элементы пирамиды:


Апофема – это отрезок, который соединяет вершину пирамиды с серединой нижнего ребра боковой грани. Иными словами, это высота грани пирамиды.


На рисунке можно увидеть треугольники ADS, ABS, BCS, CDS. Если внимательно посмотреть на названия, можно увидеть, что каждый треугольник имеет в своем названии одну общую букву – S. То есть это значит, что все боковые грани (треугольники) сходятся в одной точке, которая называется вершиной пирамиды.


Отрезок ОS, который соединяет вершину с точкой пересечения диагоналей основания (в случае с треугольников – в точке пересечения высот), называется высотой пирамиды .


Диагональным сечением называют плоскость, которая проходит через вершину пирамиды, а также одну из диагоналей основания.


Так как боковая поверхность пирамиды состоит из треугольников, то для нахождения общей площади боковой поверхности необходимо найти площади каждой грани и сложить их. Количество и форма граней зависит от формы и размеров сторон многоугольника, который лежит в основании.


Единственная плоскость в пирамиде, которой не принадлежит её вершина, называется основанием пирамиды.

На рисунке мы видим, что в основании лежит параллелограмм, однако, может быть любой произвольный многоугольник.

Свойства:


Рассмотрим первый случай пирамиды, при котором она имеет ребра одинаковой длины:

  • Вокруг основания такой пирамиды можно описать окружность. Если спроецировать вершину такой пирамиды, то её проекция будет находится в центре окружности.
  • Углы при основании пирамиды у каждой грани одинаковы.
  • При этом достаточным условием к тому, что вокруг основания пирамиды можно описать окружность, а так же считать, что все ребра разной длины, можно считать одинаковые углы между основанием и каждым ребром граней.

Если Вам попалась пирамида, у которой углы между боковыми гранями и основанием равны, то справедливы следующие свойства:

  • Вы сможете описать окружность вокруг основания пирамиды, вершина которой проецируется точно в центр.
  • Если провести у каждой боковой грани высоты к основанию, то они будут равной длины.
  • Чтобы найти площадь боковой поверхности такой пирамиды, достаточно найти периметр основания и умножить его на половину длины высоты.
  • S бп = 0,5P oc H.
  • Виды пирамиды.
  • В зависимости от того, какой многоугольник лежит в основании пирамиды, они могут быть треугольными, четырехугольными и др. Если в основании пирамиды лежит правильный многоугольник (с равными сторонами), то такая пирамида будет называться правильной.

Правильная треугольная пирамида