Золотое сечение (1). Золотое сечение и симметрия

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог “Тимей” посвящен математическим и эстетическим воззрениям школы Пифагора, в частности, вопросам золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам “Начал” Евклида переводчик Дж. Кампано из Наварры (III в.). Секреты золотого деления ревностно оберегались, хранились в строгой тайне, они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась “О перспективе в живописи”. Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1509 г. в Венеции была издана книга Луки Пачоли “Божественная пропорция” с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее “божественную суть” как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. “Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать”. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений отводил золотому сечению. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоганн Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя “Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности”.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы “вместе с водой выплеснули и ребенка”. Вновь “открыто” золотое сечение было в середине XIX века. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд “Эстетические исследования”. Цейзинг рассматривает золотое сечение без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях “математической эстетикой”.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, с изложением этого труда Цейзинга.

В конце XIX - начале XX вв. появилось немало чисто формалистических теорий о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Наука не поглотила искусство, но в те исторические периоды, когда математика и искусство сближались, это давало импульс к развитию того и другого.

Понятие золотого сечения

Выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи "Мона Лиза", подсолнухом, улиткой, снежинкой, галактикой и пальцами человека?

В математике пропорцией (лат. proportio) называют равенство двух отношений: a: b = c: d.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей.

Отрезок прямой АВ можно разделить на две части точкой С следующими способами:

  • на две равные части - АВ: АС = АВ: ВС;
  • на две неравные части в любом отношении (такие части пропорции не образуют);
  • в крайнем и среднем отношении таким образом, когда АВ: АС = АС: ВС.

Последнее и есть золотое деление.

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью, если АВ принять за единицу, то AE = 0,618..., ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.

Построение второго золотого сечения. Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.

Линией второго золотого сечения прямоугольника находится посередине между линией золотого сечения и средней линией прямоугольника.

Пентаграмма

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Построение правильного пятиугольника и пентаграммы.

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки в золотом отношении. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в золотой пропорции.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г. вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д.

Этот ряд известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих, а отношение смежных чисел ряда приближается к отношению золотого деления. Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда. Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение, золотое сpеднее или золотая пропорция. В алгебpе это число обозначается гpеческой буквой φ (фи).

Итак, Золотая пропорция равна 1: 1,618

Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом φ. Это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Золотой прямоугольник и золотая спираль

В геометрии прямоугольник с золотым отношением сторон стали называть золотым. Его длинные стороны соотносятся к короткими - в соотношении 1,168: 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов. Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Золотое сечение это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве - во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Определение

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина - 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.
Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом отражающим структуру и порядок нашего мироустройства.


История

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой - Отца, а целое - Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.


Природа

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.


Человек

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек - это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века.
Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.

В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела - 8:5.


Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следователи этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна будь-то камин, этажерка, кресло или сам поэт строго вписаны в золотые пропорции.
Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента

Формы временно̀го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи - 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) - это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух - в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Что общего у египетских пирамид, картины «Мона Лиза» Леонардо да Винчи и логотипов Twitter и Pepsi?

Не будем тянуть с ответом – все они созданы с использованием правила золотого сечения. Золотое сечение – это соотношение двух величин а и b, которые не равны между собой. Данная пропорция часто встречается в природе, также правило золотого сечения активно используется в изобразительном искусстве и дизайне – композиции, созданные с использованием «божественной пропорции», хорошо сбалансированы и, что называется, приятны для глаз. Но что именно представляет собой золотое сечение и можно ли использовать его в современных дисциплинах, к примеру, в веб-дизайне? Давайте разберемся.

НЕМНОГО МАТЕМАТИКИ

Допустим, у нас есть некий отрезок АБ, разделенный надвое точкой С. Соотношение длин отрезков: AC/BC = BC/AB. То есть, отрезок разделен на неравные части таким образом, что большая часть отрезка составляет такую же долю в целом, неразделенном отрезке, какую меньший отрезок составляет в большем.


Такое неравное разделение и называется золотым сечением. Обозначается золотое сечение символом φ. Значение φ составляет 1,618 или 1,62. В общем, если говорить совсем просто, это деление отрезка или любой другой величины в отношении 62% и 38%.

«Божественная пропорция» была известна людям с древнейших времен, этим правилом пользовались при возведении египетских пирамид и Парфенона, золотое сечение можно обнаружить в росписи Сикстинской капеллы и на картинах Ван Гога. Широко используется золотое сечение и в наши дни – примеры, которые постоянно у нас перед глазами – это логотипы Twitter и Pepsi.

Человеческий мозг устроен таким образом, что он считает красивыми те изображения или объекты, в которых можно обнаружить неравное соотношение частей. Когда мы говорим о ком-то, что «он пропорционально сложен», мы, сами того не ведая, имеем в виду золотое сечение.

Золотое сечение можно применять к различным геометрическим фигурам. Если взять квадрат и умножить одну его сторону на 1,618, то мы получим прямоугольник.

Теперь, если наложить квадрат на этот прямоугольник, мы сможем увидеть линию золотого сечения:

Если продолжать использовать эту пропорцию и разбивать прямоугольник на более мелкие части, мы получим вот такую картину:

Пока еще не понятно, куда нас заведет это дробление геометрических фигур. Еще чуть-чуть и все станет ясно. Если в каждом из квадратов схемы провести плавную линию, равную четвертинке окружности, то мы получим Золотую спираль.

Это необычная спираль. Ее еще иногда называют спиралью Фибоначчи, в честь ученого, который исследовал последовательность, в которой каждое число рано сумме двух предыдущих. Суть в том, что это математическое соотношение, визуально воспринимаемое нами как спираль, встречается буквально повсюду – подсолнухи, морские раковины, спиральные галактики и тайфуны – везде есть золотая спираль.

КАК МОЖНО ИСПОЛЬЗОВАТЬ ЗОЛОТОЕ СЕЧЕНИЕ В ДИЗАЙНЕ?

Итак, теоретическая часть окончена, переходим к практике. Неужели золотое сечение можно использовать в дизайне? Да, можно. К примеру, в веб-дизайне. Учитывая данное правило, можно получить правильное соотношение композиционных элементов макета. В результате все части дизайна, вплоть до самых маленьких, будут гармонично сочетаться между собой.

Если взять типичный макет с шириной 960 пикселей и применить к нему правило золотого сечения, то мы получим вот такую картину. Соотношение между частями составляет уже известное 1:1,618. В результате мы имеем двухколоночный макет, с гармоничным сочетанием двух элементов.

Сайты с двумя колонками встречаются очень часто и это далеко не случайно. Вот, к примеру, сайт National Geographic. Две колонки, правило золотого сечения. Хороший дизайн, упорядоченный, сбалансированный и учитывающий требования визуальной иерархии.

Еще один пример. Дизайн-студия Moodley разработала фирменный стиль для фестиваля исполнительского искусства в Брегенце. Когда дизайнеры работали над афишей мероприятия, они однозначно пользовались правилом золотого сечения для того, чтобы верно определить размер и расположения всех элементов и в результате получить идеальную композицию.

Агентство Lemon Graphic, создавшее визуальный образ для компании Terkaya Wealth Management, также использовала соотношение 1:1,618 и золотую спираль. Три элемента дизайна визитной карточки прекрасно вписываются в схему, в результате чего все части очень хорошо сочетаются между собой

А вот еще интересное использование золотой спирали. Перед нами опять сайт National Geographic. Если взглянуть на дизайн повнимательнее, то можно увидеть, что на странице есть еще один логотип NG, только поменьше, который расположен ближе к центру спирали.

Разумеется, это не случайно – дизайнеры прекрасно знали, что они делают. Это отличное место, чтобы продублировать логотип, так как наш глаз, рассматривая сайт, естественным образом смещается к центру композиции. Так работает подсознание и это необходимо учитывать при работе над дизайном.

ЗОЛОТЫЕ КРУГИ

«Божественная пропорция» может применяться к любым геометрическим фигурам, в том числе и к кругам. Если вписать окружность в квадраты, соотношение между которыми составляет 1:1,618, то мы получим золотые круги.

Вот логотип Pepsi. Все ясно без слов. И соотношение, и то, как была получена плавная дуга белого элемента логотипа.

С логотипом Twitter все немного сложнее, но и здесь видно, что его дизайн основан на использовании золотых кругов. Он немного не соответствует правилу «божественной пропорции», но по большей части все его элементы вписываются в схему.

ВЫВОД

Как видно, несмотря на то, что правило золотого сечения известно с незапамятных времен, оно нисколько не устарело. Следовательно, его можно использовать в дизайне. Не обязательно изо всех сил стараться уложиться в схему – дизайн дисциплина неточная. Но если нужно добиться гармоничного сочетания элементов, то попробовать применить принципы золотого сечения не помешает.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом отражающим структуру и порядок нашего мироустройства.

Определение

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух. Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях. Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении. Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть. Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали. Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды. В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века. Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа. В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следователи этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль. Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна будь-то камин, этажерка, кресло или сам поэт строго вписаны в золотые пропорции. Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон. И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение. Слово, звук и кинолента Формы временно̀го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34. Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения. Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение. Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

. ИМЯ, ДАННОЕ ПО ОШИБКЕ

всё о золотом сечении

Числа правят миром.

Пифагор

Числа не управляют миром,

но показывают, как управляется мир.

Гёте

П ойдем к неизвестному от известного, а путь начнем прямо с середины. Только не простой, а золотой.

Золотое сечение («Божественная пропорция», если верить теоретикам времен Возрождения), – пожалуй, самый знаменитый из математических феноменов. Но заговори о золотой пропорции с математиком, и он посмотрит на тебя как на изобретателя вечного двигателя, охотника за НЛО или снежным человеком. Ну а как еще относиться к тому, кто и в XXI веке ищет философский камень, обращающий простой металл в золото ?

Для математика в золотом сечении ни тайны, ни загадки: всего лишь решение простенького квадратного уравнения

x 2 – x – 1 = 0

А можно и проще: золотое сечение – среднеарифметическое √5 и 1.

√5 + 1

–––––= Ф = 1, 618…

Однако при этом

√5 – 11

–––––= –––– = 0,618…

2Ф

Золотое число и обратное ему отличаются на единицу. Так что основных золотых чисел, строго говоря, – два: Ф и 1/Ф: у множая на Ф , или деля на 1/Ф , получишь один и тот же результат.

Но математик не для того грыз гранит науки, чтобы тешиться нехитрыми перевертышами, или ломать зубы о философский камень, даже если это камень гармонии.

Для него золотое сечение – ни два, ни полтора .

А оно и впрямь 1,618 0339887498948482045868...

П ервое упоминание о принципе золотого сечения находим в «Началах» Евклида.

Около 400 г. до н. э. великий александрийский геометр записал удивительное наблюдение:

При среднепропорциональном делении отрезка относительно его краев весь отрезок относится к бóльшей своей части, как бóльшая к меньшей .

Речь о делении отрезка относительно его центра и краев.В общеупотребимом переводе на условный русский – деление отрезка в среднем и крайнем отношении .

Итак, золотая пропорция – точка геометрического равновесия в отношении и целого с его частями, и самих частей. А, следовательно, и некая константа, идеальная для развития объекта, системы или процесса.

СПРАВКА:

О золотом делении упоминает Платон (около 360 года до н. э.). Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора. В частности, есть здесь и такое рассуждение:

«Два члена сами по себе не могут быть хорошо сопряжены без третьего, ибо необходимо, чтобы между одним и другим родилась некая объединяющая с их связь. Прекраснейшая же из связей такая, которая в наибольшей степени единит себя и связуемое, и задачу эту наилучшим образом выполняет пропорция, ибо, когда из трех чисел – как кубических, так и квадратных – при любом среднем числе первое так относится к среднему, как среднее к последнему, и соответственно последнее к среднему, как среднее к первому, тогда при перемещении средних чисел на первое и последнее место, а последнего и первого, напротив, на средние места выяснится, что отношение необходимо остается прежним, а коль скоро это так, значит, все эти числа образуют между собой единство».

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида (около 300 г. до н. э.), где оно применяется для построения правильного пятиугольника. Однако термин «золотое сечение» (goldener Schnitt ) введён лишь в 1835 году немецким математиком и Мартином Омом (1792–1872). (Он был младшим братом знаменитого физика Георгия Ома.) Термин появился во втором издании учебника Мартина Ома . В 1854 году в капитальном исследовании о пропорциях человеческого тела тем же термином воспользовался физиолог Адольф Цейзинг . Символ φ (греческая буква “ phi ”) для обозначения золотого числа 1,618… впервые использовал в начале XX века американский математик Марк Барр. Сделано это было в память и честь античного скульптора Фидия, под чьим руководством возводился Парфенон.

И хотя считается, что Леонардо да Винчи делал иллюстрации к трактату Луки Пачоли «Божественная пропорция» (это как раз о золотом сечении), упоминаний об использовании им золотого сечения не обнаружено.

У золотой пропорции две формулы и два числа – мажорное (Ф ) и обратное первому – минорное (Ф 1 ):

Ф = (√5 + 1) : 2 = 1,618...

Ф 1 = 1: Ф = (√5 – 1) : 2 = 0,618...

И если Ф – решение квадратного уравнение x 2 – x – 1 = 0,

то Ф 1 – решение уравнения x 2 + x – 1 = 0 .

Умножая на число мажорного золота (Ф ), или деля на минорное золото (1: Ф ), мы получим одинаковый результат. Следовательно, Ф 1 – число, обратное Ф . и При этом не существует других чисел, которые были бы больше своего обратного ровно на единицу. И как мажорное золото на единицу больше минорного, квадрат мажорного золота на единицу больше его самого:

Ф 2 = (√5 + 3) : 2 = 2,618...

Прогрессия вида 1, Ф , Ф 2 ... Ф n – не только геометрическая, это еще и арифметический ряд, в котором каждый его член, начиная с третьего, равен сумме двух предыдущих:

Ф 2 = 1 + Ф

Ф 3 = Ф 2 + Ф

Ф 4 = Ф 3 + Ф 2

Ф 5 = Ф 4 + Ф 3

. . . . . . . . . . .

В наши дни феномен золотого сечения окружен плотным и почти непроницаемым для взгляда дилетанта облаком из паранаучных спекуляций, – начиная с мифа о том, что золотой эту пропорцию назвал Леонардо да Винчи, и заканчивая мифическими целебными свойствами построенных по «золоту» пирамид. (Однако это тема для другого разговора и отдельного исследования.)

Математическое и философское изучение «золотых» свойств продолжается уже без малого пять тысячелетий. Древнейший дошедший до наших дней «золотой» древнеегипетский памятник – гробница зодчего Хесира в Саккаре (XXVIII или XXVII век до н. э.), которую можно назвать Академией архитектурного канона, ведь здесь, в нишах галереи стояли деревянные панно с геометрическими иллюстрациями к не дошедшему до нас трактату Имхотепа об архитектуре (сейчас они хранятся в Египетском музее), и, судя по всему, Хесира (Посвященный богу Ра), это – сакральное имя самого строителя первой ступенчатой пирамиды Джосера, легендарного зодчего Имхотепа.

В плане мавзолей Хесира имеет золотую пропорцию (на что, впрочем, до сих пор внимание исследователей не обращалось).

Однако только за последние восемь веков были сделаны несколько фундаментальных открытий, значение и последствия которых, как мне представляется, до сих пор должным образом не осмыслены.

П осле выхода в 2003 г. романа Дэна Брауна «Код да Винчи» престиж всенародного золотоискательства заметно повысился. Это при том, что русском переводе романа можно прочитать буквально следующее:

– «Все растения, животные и даже человеческие существа наделены физическими пропорциями, приблизительно равными корню от соотношения числа PHI к 1». (Ладно, пусть число Фи недопереведено и названо PHI, но откуда здесь корень, когда речь о самом Ф , то есть о 1,618...?)

– «Семена подсолнечника располагаются по спиралям, против часовой стрелки», а «соотношение диаметра каждой из спиралей к диаметру следующей равно PHI». (Это на сколько же семечки одной спирали должны отстоять от ряда семечек смежной спирали? На самом деле речь должна идти о пропорции числа спиралей, разворачивающихся по часовой стрелке и против нее).

– «Измерьте расстояние от макушки до пола. Затем разделите на свой рост...» и получите, мол, Фи. (Да не Фи, а единицу, поскольку рост – это и есть расстояние от макушки до пола.)

Виноват не Браун (столь примитивных глупостей в английском тексте нет), а его русский переводчик. Но утверждение о том, «Витрувианский человек» Леонардо да Винчи (знаменитый рисунок Леонардо, где человек вписан в квадрат и круг) назначен иллюстрировать Фи-пропорции человеческого тела, – явно на совести автора оригинала, потому что никаких Фи-пропорций в этом рисунке нет, хотя и это заблуждение и кочует из одного золотого опуса в другой (и той же поддельной пробы).

Поясню: античный теоретик архитектуры Витрувий в начале третей своей книги пишет, что культовые здания должны иметь пропорции человека. И добавляет, что человеческое тело есть модель пропорций, поскольку, если человек раскинет руки и ноги, то фигура вписывается в совершенные геометрические фигуры: квадрат и круг.

Увы, не вписывается. Для этого достаточно (вслед за архитектором Игорем Шмелевым) измерить длину ног от шейки бедра (фактически от тазобедренного сустава) до стопы. И оказывается, что длина раскинутых ног Витрувианского человека короче первой пары его собственных ног почти на 1/10.

То есть, если человеческое тело и вписывается в круг, то до верха этого круга можно достать, только очень сильно подпрыгнув.

В иллюстрации Леонардо к Витрувию золотого сечения нет не потому, что пупок находится на высоте 1,64 (а не 1,62) от роста, а потому, что вся логика построения тела по Витрувию исключает золотую пропорцию. Пупок на рисунке – только центр круга, а в основе чертежа квадрат, и только он. Об этом говорят прямые горизонтальные и вертикальные штрихи, которыми Леонардо разделил руки, ноги, и тело человека: ноги – половина роста, половина от длины ног – их заколенный сгиб. Руки также сгибаются по половине длины (а длина кисти руки – 1/10 от роста).

Само тело, впрочем, поделено на три части (голова с шеей до уровня плечевого сустава; от плечевого сустава до низа ребер; от низа ребер до низа лобка).

Верхнюю точку круга Леонардо получил, прибавив к точке плечевого сустава длину руки. А потом нашел середину и сделал ее пупком.

Витрувианский человек. Рисунок Леонардо да Винчи.

Центр круга – пупок, центр квадрата – низ лобка.

Тело вписано прямоугольник,

короткая сторона которого равна в ¼ большого квадрата.

По вертикали ¼ большого квадрата дает следующие отметки:

низ груди, лобок, сгиб ног.

Пупок не на высоте золотого сечения (Н: 1,62),

а на высоте, полученной из логики членения квадрата (Н: 1,64).

Леонардо не был витрувианцем. Свое графическое рассуждение он предваряет словами: «Витрувий, архитектор, полагает…» И никаких свидетельств о сознательном использовании этим гением Возрождения золотого сечения и даже об интересе его к золотому сечению нет.

СПРАВКА:

В эпоху Возрождения (с конца 14 до середины 16 столетия) художники и ученые пытались объяснить и описать красоту в более научных терминах. Альбрехт Дюрер пытался применить математические принципы к построению идеальной женской фигуры. В результате получилась непропорциональная и совсем не красивая фигура. Тогда Дюрер в своих попытках описания красоты обратился к природе и написал четыре книги о пропорциях человеческого тела. В конце концов, Дюрер пришел к заключению, что там, где речь идет о формах, на Земле нет никого, кто мог бы судить о том, что такое абсолютно самое прекрасное.

ЕЩЕ СПРАВКА:

Альбрехт Дюрер (Albrecht Durer). Теоретик искусства. Автор трудов: «Руководство к измерению с помощью циркуля и линейки» (Нюрнберг, 1525); «Четыре книги о пропорциях человека» (Нюрнберг , 1528 ).

Классик немецкого Возрождения, Альбрехт Дюрер (1471-1528) работая над гравюрой "Немезида или Большая Фортуна" (Ок. 1501) применил принципы пропорционирования Витрувия. Согласно исследованию Эрвина Панофского (1892-1968), признанного корифея европейского искусствоведения, в изображённой фигуре даже размер большого пальца согласуется с Витрувием. Но результат оказался очень далёк от классического идеала и не производил желаемого впечатления, в том числе и на самого Дюрера. В дальнейшем своём творчестве Альбрехт Дюрер от услуг Витрувия отказался, но им самим был написан трактат альтернативный труду Витрувия, полное название которого звучит так: "Здесь заключены четыре книги о пропорциях человеческого тела, найденных и описанных Альбрехтом Дюрером из Нюрнберга на пользу всем любящим таковую науку". В начале трактата Дюрер, критически осмысливший наследие Витрувия, заявляет: "…только совсем слабый разум не верит, что он может найти нечто новое, но держится всегда старого пути, следуя за другими и никогда не осмеливаясь самостоятельно думать". Дерзость у Дюрера сочетается со скромною, о которой он напоминает людям говоря: "Нет также на земле человека, который мог бы окончательно сказать, какою должна быть прекраснейшая человеческая фигура. Никто не знает этого, кроме одного Бога".

Дюрер потерпел поражение: попытка реконструировать человеческую фигуру с помощью математики не удалась.

Б ольшинство золотоносных мифов связано с тем, что названо пирамидоманией (этим заболеванием, как полагает директор Каирского музея и главный хранитель всех египетских древностей доктор Захи Хавасс, обычно страдают пирамидиоты ).

В интернете можно найти множество утверждений типа «Пирамида с пропорциями золотого сечения – это генератор жизни и средство гармонизации нашей Среды Обитания». Вот и строители российских «золотых пирамид» (не финансовых, а вполне материальных – из бетона и алюминия) объявили, что вблизи их детищ затягиваются озоновые дыры и снижается уровень правонарушений, а вес предметов изменяется в два раза.

Фригийского царя Мидаса Дионис наградил роковым даром: к чему бы царь ни прикасался, все обращалось в золото. (По другому варианту предания Аполлон одарил Мидаса ослиными ушами.) Все, к чему прикасаются потомки Мидаса, с помощью тех или иных математических преобразований обращается в пропорциональное золото. И сегодняшняя золотая лихорадка уже напоминает ту, что описана Алексеем Толстым в «Гиперболоиде инженера Гарина»: если золота больше, чем грязи, то оно само обращается в грязь.

Почему же тогда и сегодня отнюдь не все математики относятся к этому золоту, как к грязи?

Что бы ни утверждали скептики (см. статьи А. В. Радзюкевича, Е. Г. Назимко, В. С. Белянина на сайте новосибирских архтитекторов), мы можем показать, что исследование и осознанное использование золотой пропорции продолжается уже несколько тысячелетий, и извлеченную из √5гармонию прямых отрезков в XXVIII веке до н. э. изучал еще строитель первой большой египетской пирамиды зодчий Хесира. Впрочем, разговор о египетских пирамидах, Парфеноне и древнерусских храмах у нас впереди (см. 2–4 главы этой книжки), а потому не будем комкать сюжет беглым пересказом.

Говоря об использовании золотого сечения в античности, первым делом обычно ссылаются на то, что возведенный Поликтетом-младшим амфитеатр в Эпидавре вмещал 15 тысяч человек. В первом ярусе было 34 ряда, во втором 21 ряд (34: 21 = 1,62). А театральное пространство (окружность основания амфитеатра) поделено в отношении 222,5° к 137,5° (1,618...). Современный исследователь утверждает, что это соотношение углов реализовано в большинстве античных театров . Но брать это на веру это утверждение не стоит: нужны реальные обмеры и конкретные чертежи, а они, увы, не всегда доступны даже специалисту.

Сегодня золотое сечение находят в многообразии природных форм , в архитектуре, живописи и музыке , в творениях словесности . О нем написаны тысячи работ (пусть и разного достоинства). Тем более странно, что золотое сечение все равно остается загадкой – вроде как перо из хвоста Жар-птицы в руках Дурака.

Горит несамоварным огнем, переливается всеми цветами радуги...

Но где же сама птица?

Известно, что построить пропорцию золотого сечения можно с помощью линейки и циркуля. Разделим квадрат по горизонтали пополам. Проведем диагональ полуквадрата и, приняв ее за радиус, перенесем на вертикаль. Полученный прямоугольник будет прямоугольником золотого сечения

В прямоугольнике со сторонами 1 и 2 (его называют или полуквадратом, или двойным квадратом) диагональ равна √5. Если к этой величине прибавить единицу и полученный отрезок разделить пополам, то мы получим мажорное золото. Если же единицу отнять и остаток разделить на два, то золото будет минорным.

При этом надо помнить, что:

Части относятся друг к другу по удвоенному минорному золоту, когда они получены путем разделения целого на √5.

В эпоху Возрождения золотое сечение именовали «Божественной пропорцией» (Section Divine ). Принято за установленный факт, что золотым сечением (Sectio aurea ) эту пропорцию» назвал Леонардо да Винчи. При этом ссылаются на изданный в Венеции в 1509 г. трактат Луки Пачоли, посвященный свойствам плоских и пространственных фигур. Но этот труд основателя начертательной геометрии называется «De Divina Proportione» («О божественной пропорции»), и ни о каком «золоте» в нем не говорится.Иллюстрации к сочинению Пачоли, как полагают (и, вероятно, справедливо, поскольку есть свидетельство самого Пачоли), делал Леонардо да Винчи. Но собственных высказываний Леонардо на данную тему мы не знаем, что бы ни декларировал по этому поводу современный белорусский философ Эдуард Сороко .

Считают доказанным, что во многих своих произведениях Леонардо да Винчи использовал пропорции золотого сечения (в частности, их находят и «Тайной вечере», «Джоконде»). Но тут сторонники золотого сечения противоречат сами себе: если оно и впрямь – универсальный закон, то наличие его в некоем творении человеческого гения вовсе не свидетельствует о сознательном его использовании.

Термин «золотое сечение» появился лишь в 1835 году. Скорее всего, это просто ошибка памяти Мартина Ома, неточное цитирование им цветистой формулы Иоганна Кеплера (1571–1630) , который писал: «У геометрии два сокровища: одно – теорема Пифагора, другое – деление отрезка всреднепропорциональном отношении. И если первое из этих двух сокровищ можно сравнить с мерой золота, то второе с драгоценным камнем».

По Кеплеру золотая пропорция должна бы называться изумрудной или сапфировой. Но поскольку самый драгоценный из камней, конечно, – философский, слов «драгоценный камень» и «мера золота» оказалось достаточным, чтобы через три столетия воспетое Кеплером сечение вполне алхимическим образом обратилось в золотое.

Лука Пачоли утверждал: «...наша пропорцияне может быть выражена ни доступным нам числом, ни какой бы то ни было рациональной величиной и остается скрытой и тайной и поэтому математиками названа иррациональной».

Из этого делают вывод, что итальянский математик нашел лишь некое приближение к золотой пропорции.

Но это ошибка.

ЗАМЕТКИ НА ПОЛЯХ

Пачоли предлагал такие формулы:

√125 – 5

–––––––

15 – √125

√180 – 6

––––––––

18 – √180

Но можно было бы обойтись и вариантом с подставленными под радикалы двузначными числами:

√20 – 2

–––––––

6 – √20

Ведь все это сводятся к записи:

√5 – 1

–––––

3 – √5

А, домножив числитель и знаменатель на (√5 + 1) : (√5 – 1) ,получим классическую запись золотого сечения:

√5 + 1

––––– = 1,618...

Лука Пачоли, видимо, не мог не понимать, к чему сводятся предложенные им равенства. Зачем же он скрыл базовую формулу и ввел потомков в искус высокомерного отношения к собственной персоне? Вряд ли найдем другое объяснение, кроме того, что De Divina Proportione для итальянского математика и впрямь была Божественной, и, потому, надо думать, на ее формулу распространялось правило не поминать имя Господа всуе. Пачоли писал: «...подобно тому, как Бог не может быть ни определен, ни словом разъяснен, наша пропорция не может быть выражена ни доступным нам числом, ни какой бы то ни было рациональной величиной и остается скрытой и тайной и поэтому математиками названа иррациональной ».

Пачоли полагал, что Божественная пропорция символизирует Троицу (Бог Отец – целый отрезок, Сын – бóльший, Дух – меньший). И смиренно оставлял следующим за ним право самостоятельно сделать столь, казалось бы, легкий и естественный шаг и самим прийти к открытию той Тайны, которая так потрясла все его существо и к которой он подвел своего читателя практически вплотную.

П ервые работы, специально посвященные золотому сечению, вышли в конце XVIII столетия. А в серединеXIX века немецкий профессор издал Адольф Цейзинг капитальное «Новое учение о пропорциях тела человека, из остающихся до сих пор непознанных морфологических основ, пронизывающих всю природу и искусство» . В 1855 г. труд Цейзинга был переиздан под названием «Эстетические исследования».

Цейзинг считал, что все в мире можно объяснить золотой пропорцией и рассматривал ее в качестве основного морфологического закона природы и искусства. Он сам сделал тысячи обмеров и показал, что этот закон работает и в пропорциях тела человека и в телах «красивых животных». Немецкий физиолог Густав Фехнер попытался обосновать выводы Цейзинга и обнаружил связь психофизических особенностей восприятия человека и «золотыми» формами вещей . Процитирую из работы Евгения Скляревского: «Фехнер измерил отношения сторон у тысяч окон, картинных рам, игральных карт, книг и других прямоугольных предметов, проверил, в каком отношении поперечные перекладины могильных крестов на кладбищах делят вертикальные основания, и обнаружил, что в большинстве случаев полученные им числа мало отличаются от золотых пропорций. Фехнер разработал целый ряд остроумных тестов, в которых испытываемому предлагалось выбрать «милый его сердцу» прямоугольник из большого набора прямоугольников с различными соотношениями сторон, нарисовать самый «приятный» многоугольник, выбрать место перекладины и т.д. Многократно проведенные опыты показали, что испытуемые отдают предпочтение отношениям, близким к Ф».

В 1958 г. в Англии по методу Фехнер а был поставлен опыт: из набора прямоугольников испытуемым предлагалось выбрать те, которые они сочтут самыми красивыми. И большинство (35%) указали на золотой прямоугольник, со сторонами 34:21. (Интересно, что тот же опыт, дал совершенно иные результаты в детской аудитории, из чего делается вывод, что у ребенка совсем иные представление о красивом и гармоничном.)

Выражение «золотая середина» – это не о середине, а о золотой пропорции.

А мериканец Марк Барр, век назад предложивший обозначать число 1,618… греческой буквой Фи, попал в яблочко. (В XXI веке говорим Фидий – подразумеваем Фибоначчи.) В первой половине XX века, изучая числа Фибоначчи, к неожиданным открытиям приходят голландский математик Абрахам Витгоф, автор теории «игры Витгофа», впервые описанной им в 1905 г., и бельгийскй математик Эдуард Цекендорф. В 1939 г. Цекендорф опубликовал статью, в которой доказал теорему о том, что каждое положительное целое число имеет единственное представление в виде суммы чисел Фибоначчи, в которой два соседних числа Фибоначчи не используются (пример: 30 = 21 + 8 + 1).

В 1957 г. двенадцатилетний (так! – А. Ч. ) американский математик Джордж Бергман в журнале «Mathematics Magazine» опубликовал статью «Система счисления с иррациональны основанием» , в которой предложил в качестве основания системы счисления использовать золотое число 1,618.... Поскольку, возведенная в степень n , золотая пропорция может быть выражена в виде суммы двух предыдущих степеней, то система Бергмана позволяет делать коррекцию ошибок в аналого-цифровых преобразователях и приводит самосинхронизация кодовых последовательностей при передаче сигнала по каналу связи. (Ныне вчерашний вундеркинд – маститый профессор кафедры математики в Калифорнийском университете, автор двух математических книг, написанных, впрочем, в соавторстве.)

В1963 г. по инициативе американского математика Вернера Хоггатаи ученого монаха Альфреда Бруссау в США была создана математическая Фибоначчи-Ассоциация («The Fibonacci Quarterly»), которая ежеквартально издает математический журнал The Fibonacci Quarterly. В 1969 г. издательство «Houghton Mifflin» выпустило книгу Вернера Хоггата «Числа Фибоначчм и Люка» (Fibonacci and Lucas Numbers» . А Бруссау был не только монахом, но и фанатичным фотографом: он оставил человечеству снимки двадцати тысяч дикорастущих растений Калифорнии.

В 1969 г., опираясь теорему Цекендорфа , работы американского математика Джулии Робинзон и еще одну теорему, доказанную в 1942 г. советским математиком Николаем Воробьевым , двадцатидвухлетний студент матмеха Ленинградского университета Юрий Матиясевич нашел решение знаменитой в среде математиков 10-й проблемы Гильберта (задача о разрешении Диафантовых уравнений).

В последней трети XX столетия идеи Бергмана и Брусенцова развивает завкафедрой информатики Винницкого государственного аграрного университета А. П. Стахов (с 2004 г. живет в Канаде) .

В 1990 г. сотрудником фирмы IBM французский исследователь Жан Перез (Jean-Claude Perez) открыл математический закон, управляющий самоорганизацией оснований Т, С, А, G внутри ДНК. Он обнаружил, что последовательные множества нуклеотидов ДНК представляет собой пропорцию, обеспечивающую разделение ДНК в соответствии с числами Фибоначчи.

Исследователь назвал это «ДНК SUPRA-кодом» . А. П. Стахов пишет по этому поводу:

«Рассмотрим любой отрезок генетического кода, состоящий из базисов типа Т, С, А, G , и пусть длина этого отрезка равна числу Фибоначчи, например, 144. Если число оснований типа Т в рассматриваемом отрезке ДНК равно 55 (число Фибоначчи) и суммарное число оснований типа А, С и G равно 89 (число Фибоначчи), то рассматриваемый отрезок генетического кода образует резонанс , то есть, резонанс есть пропорция между тремя соседними числами Фибоначчи (55-89-144). Открытие состоит в том, что каждая ДНК образует множество резонансов рассмотренного вида, то есть, как правило, отрезки генетического кода длиной, равной числу Фибоначчи F n , разбиваются золотым сечением на множество оснований типа Т (число которых в рассматриваемом отрезке генетического кода равно F n- 2) и суммарное множество остальных оснований (число которых равно F n- 1). Если произвести систематическое исследование всех возможных «фибоначчиевых» отрезков генетического кода, тогда получим некоторое множество резонансов , называемое SUPRA-кодом ДНК . Начиная с 1990 г., указанная закономерность была многократно проверена и подтверждена многими выдающимися биологами, в частности профессорами Montagnier and Chermann, исследовавшими ДНК вируса СПИДа» .

Позволим себе еще одну цитату:

«В настоящее время числа Фибоначчи усиленно изучаются бизнесменами и экономистами. Замечено, что волны, описывающие колебания котировок ценных бумаг, являются огибающими маленьких волн, те, в свою очередь, еще более мелких, а количество мелких колебаний в периоде более крупного соответствует ряду Фибоначчи. Впервые это предложил инженер Ральф Hельсон Эллиотт. После серьезной болезни в начале 1930-х он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы – за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной. Он писал: "Любoй человеческой деятельности присущи три отличительных особенности: форма, время и отношение, – и все они подчиняются суммационной последовательности Фибоначчи”. Если вы разберетесь с числами Фибоначчи и волнами Эллиота, то можете разбогатеть, играя на бирже ценных бумаг» .

По Эллиоту закон волн – это модель развития и упадка, и соотношения между волнами базируются на числах, полученных из ряда Фибоначчи и, в частности, на золотом сечении.

В книге «Закон природы – секрет Вселенной», вышедшей в 1946 году, Ральф Нельсон Эллиот утверждает, что его теория охватывает не только поведение фондовых индексов, но и более общие законы природы, управляющие деятельностью человеческого общества .

Эллиот сводит развитие общества к десятку типов моделей движения («волн»), повторяющихся по форме, но не по времени или амплитуде. Согласно теории Эллиота, движение происходит по «старому доброму принципу» три шага вперед два шага назад и волны разделяются на импульсные (вперед) и корректирующие (назад). Базисной является пятиволновая модель, все остальные могут быть выделены из нее.

Но почему тогда волны Эллиота располагаются где-то на маргинальной периферии экономической науки?Известно, что «девять из десяти трейдеров отказываются от применения волн Эллиота, утверждая, что он никогда не срабатывает». Подсчитано, что около 65% анализа по волнам Эллиота состоит из столь запутанных правил, что десять аналитиков дадут десять разных прогнозов. Вот и заголовок интернетовской статьи экономиста Константина Царихина звучит на удивление знакомо: «Сеанс волновой магии с ее полным разоблачением ».

Царихин пишет:

«Автор настоящей статьи не согрешит против правды, если скажет, что любой аналитик, проработавший на рынке более-менее продолжительное время, может подобрать «на заказ» огромное количество графиков с практически любым волновым рисунком. Практика, таким образом, выносит свой вердикт, который, возможно, и огорчит особо рьяных приверженцев теории Эллиота. Этот вердикт звучит так: частный случай. Лягушка, раздувшаяся до размеров быка, увы, лопнула. Чтобы предсказать будущее надо … Трудно сказать, что для этого надо сделать, но уж точно можно сказать, что разбивать график на волны не надо. Все равно это уведет исследователя в сторону» .

Как заметил аналитик «Альфа-банка» Владимир Кравчук: «...оптимизированные технические инструменты, хорошо работающие в прошлом, могут плохо работать или вовсе не работать в будущем».