Влияние различных факторов на скорость распространения пламени. Скорость распространения пламени Нормальная скорость распространения пламени

Смазочные материалы

Основная цель при разработке экологобезопасных смазочных материалов - создание продукта с высокой биоразлагаемостью и низкой экотоксичностью. В развитых странах Запада в

настоящее время государственные и частные компании начинают создавать рынок экологобезопасных смазочных материалов. Большинство исследований ориентировано на химическую композицию продукта и оценку его биоразлагаемости. При создании экологически безопасных смазочных материалов рассматривают два основных направления: производство базовых масел, химическая природа которых определяет характер воздействия на окружающую среду, и синтез новых присадок -экологобезопасных, биоразлагаемых и эффективных.

В настоящее время и, вероятно, для будущего, особое значение приобретают три группы базовых масел, получаемых из различных сырьевых источников : нефтяные масла гидро-крегинга (ГК), полиальфаолефины (ПАО) и сложные эфиры, подверженные быстрому биоразложению в окружающей среде. Большое значение на неопределенно долгий срок, несомненно, сохранят и базовые нефтяные масла традиционных поточных схем, особенно с учетом того фактора, что смазочные материалы, получаемые на базе ПАО. сложных эфиров полиспиртов, полиалкиленгликолей и сложных диэфиров, имеют стоимость в 2-10 раз больше, чем нефтепродукты. Повышенная биоразлагаемость при этом не является стимулом для преодоления разницы в ценах .

Высокие эксплуатационные характеристики и экологическая чистота минеральных масел обеспечивается набором определенных качеств. Прежде всего, это их узкий фракционный и благоприятный групповой химический состав с минимальным количеством содержащих серу и азот соединений в базовых маслах. Выбор сырья, сортировка нефтей, используемых при производстве высокоиндексных масел, и их раздельная переработка имеют первостепенное значение. В получении базовых минеральных масел, удовлетворяющих экологическим требованиям, большую роль играет селективная очистка, снл-

жающая канцерогенность продукта. В настоящее время в США и Канаде свыше 70% базовых масел получают путем селективной очистки. Широкие возможности открывает применение таких современных процессов, как гидрокрекинг, гидродепарафинизация, гидроизомеризация. Указанные технологии подробно описаны в работе . Использование гидрокаталитических процессов в сочетании с традиционными методами очистки масляного сырья селективными растворителями улучшает эксплуатационные и экологические свойства базовых масел .

В табл. 1.4 приведены сравнительные данные по химическому составу базовых масел, полученных с использованием селективной очистки и гидроочистки. Последняя существенно снижает содержание аренов, серы и азота в маслах.

Таблица 14

Влияние гидроочистки на химический состав

базовых масел

Внедрение в производство базовых минеральных масел процессов гидрокрекинга и гидроизомеризации позволяет получать продукты повышенной биоразлагаемости и не содержащие аренов. Масла гидрокрекинга, согласно результатам, полученным с помощью современных методов испытаний, нетоксичны, практическое отсутствие в них аренов говорит о весьма низкой канцерогенности и незначительной вероятности ее роста путем образования и накопления полициклических аренов в процессе эксплуатации; отсутствие аренов и преобла-

дание изопарафинов обеспечивает достаточно высокую биоразлагаемость .

В США базовые масла гидрокрекинга производятся с конца 1996г. . Подготовлена к пуску установка в Финляндии .

В России ВНИИНП совместно с научно-инженерным центром ОАО «ЛУКОЙЛ» и АО «ЛУКОЙЛ - Волгограднефтепе-реработка» ведут исследовательские работы по организации производства ряда дефицитных масел и основ с использованием гидрогенизационных технологий, в частности, авиационного масла МС-8 и авиационной гидрожидкости АМГ-10.

По сравнению с минеральными маслами, синтетические в ряде случаев обладают лучшими экологическими характеристиками. К важнейшим классам синтетических масел с точки зрения экологической безопасности относятся масла, изготовленные на базе синтетических сложных эфиров, полиальфао-лефинов и полибутенов. Они нетоксичны, неканцерогенны, характеризуются низкой эмиссией вредных веществ.

Синтетические масла на основе сложных эфиров с присадками с 60-х годов широко используются в ГТД гражданских и военных самолетов. В ЦИАМ совместно с ВНИИНП и 25 Гос-НИИ МО РФ проводятся работы по созданию высокотермоста-билыюго (до 240° С) сложноэфирного масла с использованием эффективных композиций присадок, не уступающего по качеству лучшим зарубежным маслам . Анализ научно-технической и патентной информации по маслам для авиационных ГТД показывает, что сложные эфиры полиолов остаются основным классом соединений для применения в качестве базовых основ [ПО]. Однако ситуация меняется со следующим поколением авиационных двигателей, поскольку совершенствование конструкции и необходимость снижения расхода топлива ведут к росту давления, температуры и наїрузки на масло.

Последнее способствует опасности возникновения локальных нагарообразований. Поэтому для военной авиации в будущем необходим отказ от использования масел на основе сложных эфиров. Для указанной цели наиболее перспективны масла нового типа - на базе простых перфторалкилполиэфиров . По современным данным, эти соединения нетоксичны и за рубежом даже используются в парфюмерии и для консервации мраморных памятников искусства и архитектуры.

Большое влияние на экологические свойства смазочных материалов оказывают присадки. В авиационных маслах в качестве присадок широко используются такие традиционные антиокислители и ингибиторы коррозии, как диоктилдифени-ламин, фенил-«-нафтиламин, бензотриазол, присадка К-51 сукцинимидного типа и другие, положительно зарекомендовавшие себя.

Во всем мире уже длительное время ведутся работы по созданию новых нетоксичных и биоразлагаемых продуктов. В частности, с 90-х годов проводятся разработки заменителей хлорсодержащих присадок . Важным является вопрос замены соединений свинца. Заменителем свинца являются соединения висмута. Начата разработка висмутдитиокарбаматной присадки .

Разработаны такие присадки, как Миф-1 (присадка сложного состава бензольного типа), Irganox L-57 (антиокислительная присадка фирмы Сиба, октилированный и бутилированный дифениламин), присадка «X» (фторсодержащее соединение с функциональными группами оксисульфита и оксикарбомата) и др.

Улучшаются свойства известных присадок. Так, в трикре-зилфосфате снижено содержание нейтротоксичного ортоизомера до 3% (Россия), а в США выпускается трикрезилфосфат, не содержащий ортоизомера.

Пожаро - и взрывоопасность авнаГСМ

Используемые в настоящее время авиаГСМ являются пожароопасными продуктами. В пожарном отношении особенно опасны газовые топлива. Углеводородные топлива (реактивные топлива, бензины и др.) относятся к легковоспламеняющимся жидкостям (ЛВЖ). Они характеризуются высокой жаролроиз-водительностью (-2000° С) и испаряемостью, легко создают с воздухом горючие смеси, которые при горении образуют большое количество продуктов сгорания (большой стехиометрический коэффициент), являющися хорошими диэлектриками и, следовательно, могут накапливать заряды статического электричества.

По пожароопасности ЛВЖ делятся на три категории. В качестве определяющего показателя используется температура вспышки (ее определяют по ГОСТ 12.1.044-89):

В зависимости от температуры самовоспламенения (определяется по ГОСТ 12.1.044-89) углеводородные топлива относятся к той или иной группе взрывоопасной смеси паров с воздухом:

Смеем паров углеводородных топлив с воздухом относятся к категории взрывоопасности ТТА: она определяется по ГОСТ 12.1.011-78. Этот показатель используют при выборе типа взрывозащищенпого электрооборудования и при конструировании огнегасителей.

Пожароопасные свойства топлива определяются также концентрационными пределами воспламенения (КПВ) - минимальным и максимальным содержанием паров топлива в смеси с воздухом (окислителем), при которых возможно распространение пламени по смеси на любое расстояние от источника зажигания (ГОСТ 12.1.044-89). Важной характеристикой топлива являются температурные пределы воспламенения -температуры, при которых насыщенные пары топлива в воздухе находятся в концентрациях, равных соответственно нижнему или верхнему КПВ. Важное значение имеет минимальная энергия электрического разряда, необходимая для воспламенения паровоздушной смеси.

При оценке пожарной опасности при обращении с топливами определяют также скорость выгорания - количество топлива, сгорающего в единицу времени с единицы поверхности; минимальную энергию зажигания - для обеспечения электростатической искробезопасиости. Оценивается взаимодействие горящего топлива с водопенными средствами тушения (по ГОСТ 12.1.044-89).

Пожару часто предшествует взрыв газовоздушной смеси. При взрыве воздушных смесей в трубах большого диаметра и длины может возникнуть детонационное горение, распространяющееся со скоростью 1100-1400 м/с. Давление при этом может повышаться до 0,8 МПа и более. Быстродействующая ударная волна вызывает резкое увеличение давления, температуры и плотности горючей смеси, что, в свою очередь, ускоряет химические реакции горения и усиливает разрушающий эффект.

Взрывоопасные концентрации паров топлив с воздухом могут образоваться в широком диапазоне температур и особенно в закрытых помещениях и емкостях. Характер и содержание мер предосторожности регламентированы специальными ведомственными инструкциями. Суть предосторожностей сводится к недопущению возникновения в местах образования взрывоопасных смесей источника нагрева, особенно источника открытого огня. Одним из опаснейших источников открытого огня является разряд электростатических потенциалов через паровоздушную среду и образование искры при ударах твердых тел. Возникновение высоких электрических потенциалов в топливе объясняется его электрофизическими свойствами. Их можно характеризовать способностью накапливать заряды в объеме (электролизуемостью) и свойствами релаксации зарядов (электропровод им остью).

В табл. 1.5. приведены показатели, характеризующие пожароопасные свойства авиационных топлив.

Таблица 1.5

Пожароопасные свойства авиационных топлив

1 Рассчитано по аддитивности.

^Рассчитаны по уравнениям (47) и (48) ГОСТ 12.1.044-89 по температуре начала кипения -10/-4°С.

°В числителе - в закрытом тигле, в знаменателе - в открытом. а ‘Пределы распространения пламени по ГОСТ 10277-89.

Нормальная скорость распространения пламени

Скорость распространения пламени в горючей смеси зависит от условий ее определения и отсчета. Для сравнительной оценки топлив по этой характеристике принята нормальная скорость распространения пламени - это линейная скорость перемещения зоны горения по отношению к свежей гомогенной горючей смеси в направлении нормали к фронту пламени. Скорость распространения пламени в таких условиях для заданного состава горючей смеси может рассматриваться как физикохимическая характеристика, которая зависит лишь от давления и температуры.

Экспериментально нормальная скорость распространения пламени определяется по ГОСТ 12.1.044-89.

При температуре 20° С и давлении 0,101 МПа в углеводо-родо-воздушных смесях максимальная скорость и„ достигается при концентрации топлива в смеси С^~1,15 С сте х(рис. 1.24), т.е.

при а - 0,87 и при числе атомов углерода в углеводороде п > 7 она составляет -39-40 см/с (рис. 1.25). Минимальная нормальная скорость распространения пламени и массовая скорость сгорания, достигаемые на концентрационных пределах распространения пламени при нормальных условиях, составляют соответственно 4-6 см/с и (5-7) 10° г/(см 2 с) .

При отсутствии экспериментальных данных нормальную скорость распространения пламени следует выбирать путем интерполяции от значений и„ для смесей, близких по физикохимическим свойствам, или использовать эмпирические уравнения. Простые и удобные уравнения предложены А.С. Пред-водителевым :

  • (1.3)

т=т п +В(Ст-С^(С в -С т),

где и„ - скорость распространения в см/с; т - массовая скорость сгорания смеси, г/(см 2 с); и 11П, т„ - предельные (минимальные) значения скорости распространения пламени; С„ и С н - концентрация топлива в смеси па нижнем и верхнем концентрационных пределах распространения пламени; А и В - коэффициенты, определяемые по одной экспериментальной точке.


Рис. 1.24.

распространения пламени в зависимости от мольного стехиометрического коэффициента избытка воздуха Ьм :

  • - парафиновые; * - олефиновые; ° - ацетиленовые; Д - нефтеновые; © - дполефнновые; ° углеводороды с С п 11 2 „ циклами
  • 1 2 3 4 5 б 7 п

Рис. 1.25. Максимальная нормальная скорость распространения пламени в топлнвовоздушноп смеси в зависимости от числа атомов углерода в молекуле углеводорода (Р=0,101 МПа, 1=20°С, открытая стеклянная труба: длина 57 см, диаметр 2,5 см) : - парафиновые; * - олефиновые;

° - ацетиленовые; Д - нафтеновые; в - днолсфиповые; о циклические (С П П2„);

1 - бензин [ 116]; 2 - бензол

Функциональная связь скорости распространения пламени с концентрацией топлива С т при С т С* т (но данным ЭМИН) может быть представлена уравнением:

  • - = 11 п

/ с г -с; л

"с т -с" т "

где м и, и п - нормальная скорость распространения пламени

при концентрациях топлива в смеси С т и С* т , см/с; и пп - то же,

на нижнем концентрационном пределе распространения пламени, см/с.

Приближенный ход кривой и н - /(С т) в смеси сложного

состава может быть построен по трем опорным точкам, соответствующим нижнему и верхнему концентрационным пределам и максимальной скорости распространения пламени. Для этих точек должны быть известны концентрации топлива и скорости распространения пламени.

Значения С т и и и для указанных точек рассчитываются

по следующей методике. Каждая сложная смесь горючих газов представляется состоящей из соответствующего числа простых смесей. Расчет состава на концентрационных пределах и в точке максимума скоростей производится по правилу смешения, исходя из концентрационных пределов и состава «максимальных смесей». Соответствующее расчетное уравнение имеет вид :

С] + С* 2 + Су -ь....

  • -I---г...
  • (1.5)

где Ь - концентрация топлива на КПРП или в смеси с максимальной скоростью распространения пламени, % (об.); С,С 2 ,С 3 ,... - концентрация простых газов в сложной смеси,

(с, + С 2 +С 3 +... = 100%); Ь|, Ь 2 ,Ь 3> ... - концентрация газов в простых смесях на КПРП или в смесях с и и, % (об.).

Величина максимальной нормальной скорости распространения пламени в смеси рассчитывается по уравнению;

С, г/, + С2и2 + С3ы3 +

С, + С 2 + с 3 4-...

  • (1.6)

где С*, С 2 , С 3 - содержание простых смесей в сложной смеси, обладающей максимальной скоростью распространения пламени, % (об.); и*, и 2 , и 3 - максимальные скорости распространения пламени в простых смесях, см/с.

Для расчета других точек кривой и и = /(С; .) следует задаться несколькими произвольными значениями скорости пламени, найти концентрацию Ь в сложной смеси по уравнению (1.5), в котором С, С 2 , С 3 заданы составом смеси.

Эта методика расчета применима к смесям газов родственной природы (например, метан-пропан). К смеси С П Н Ш с Нз и СО данная методика не применима.

Массовая скорость сгорания прямо пропорциональна абсолютной температуре предварительного подогрева смеси и может быть вычислена по уравнению:

где ш, то и т„ Р ео - массовая скорость сгорания смеси при температуре Т, То и Т П р е д , соответственно, г/(см -с).

Если Т»Т пр е Д, то

Зависимость максимальной нормальной скорости распространения пламени от температуры и давления приближенно описывается уравнением :

и’ =и1(Т /273) 2 ?(/’/10 5)", (19)

где и’о - максимальная нормальная скорость распространения пламени при температуре 293 К и давлении 0,101 МПа, см/с; Т -температура л пламени, в К; Р - давление, в Па; п - показатель степени, нс зависящим от давления в диапазоне МО 4 + 5-10 5 Па; для топливовоздушиоп смеси п = -0,3 -*? -0,4; для углеводородо-кислородных смесей П = -0,1 -5- 0.

Максимальная нормальная скорость распространения пламени в зависимости от концентрации кислорода в окислителе П Р П Уу П

giil = \%іг" 0 + В-

где Г„ I! Но - при уг,п у^ 0 , см 2 /с; В - коэффициент, определяемый по экспериментальным данным (для пропана В ~ 0,22); у/ т - предельно малая концентрация кислорода в окислителе.

Величину и*„ при разных концентрациях кислорода в окислителе 1 //„п при изменении температуры предварительного подогрева смеси от 310 до 422 К можно определять по уравнению:

»:=ат; (щ,-с), (МО

где и*„ - в см/с; Т - в К; А,С ип - находятся по экспериментальным данным, их значения для пропана, изооктана и этилена приведены ниже:

Концентрационные и температурные пределы распространения пламени

Концентрационными пределами распространения пламени (КПРП) в горючей смеси называют предельные минимальные и максимальные концентрации топлива в смеси, при которых еще возможно распространение пламени (нижний и верхний пределы, соответственно). Они зависят от химической активности топлива, концентрации окислителя и инертных примесей, теплопроводности и теплоемкости смеси, температуры и давления. КПРП для суспензионных топлив, исходя из их фн-зико- химических свойств, определяются дисперсионной средой. Определение КПРП по однородным горючим смесям проводится по ГОСТ 12.1.044-89: по п.4.11 экспериментально и по п.4.12 - расчетным путем.

По ГОСТ 12.1.044-84, концентрационные пределы распространения пламени определяются как

где С„ (я) - нижний (верхний) КПРП, % (об.); р - стехиометрический коэффициент (число молей кислорода на моль топлива); а и Ь - универсальные константы, их значения приведены ниже:

Для топлив С П Н Ш

Р = п +т/ 4.

Погрешность расчета: для нижнего предела 0,12; для верхнего 0,40 при (3 р > 7,5 . Данные по КПРП в зависимости от р (% об.) приведены в табл. 1.6 (ГОСТ 12.1.044-84).

Таблица 1.6

Концентрационные пределы распространения пламени (нижний и верхний) паров и газов в воздухе

Известны и другие уравнения для вычисления КПРП, а именно:

  • 4,76-(N-1) + ! ’
  • (1.14)
  • 4,76/У +4 ’
  • (1.15)

где С„ и С в - в % (об.); N - количество атомов кислорода, необходимого для полного окисления топлива.

Для топлива С„Н т

  • (1.17)
  • 3,74 10 5

где С„ - в % (об.); (} н - низшая мольная теплота сгорания, кДж/кмоль.

Д ля углеводородных топлив СпН т при 3 п 10 погрешность расчета ±15%.

Если известны КПРП для отдельных компонентов топлива, то его нижний КПРП рекомендуется вычислять по уравнению:

где С и С„ - концентрации 1-го компонента в смеси и на нижнем пределе, % (об.).

Для топлив С п Н т в первом приближении а к ~ а п - 1,42. Пересчете, и С в в а н и а н производится:


где С„ (й) - концентрация топлива на нижнем (верхнем)

КПРП, % (об.); Мт и Мо- молекулярная масса топлива и окислителя; Ьо - в кг окислителя/кг топлива; Ь м - мольный стехиометрический коэффициент, моль окпелнтеля/моль топлива.

Пересчет нижнего КПРП для различных температур можно проводить по уравнению :

Л II л

Т - 293

где Т„ - температура (в К) продуктов сгорания смеси, в которой концентрация топлива при 293 К соответствует нижнему КПРП (в первом приближении Т„ для углеводородовоздушной смеси равна 1600-1650К); С„ и С „ - концентрации топлива, соответствующие нижнему концентрационному пределу при температурах Т и 293 К, % (об.).

Уравнение (1.20) справедливо в широком диапазоне температур, однако его нельзя использовать при температурах, близких к температуре самовоспламенения.

Температура продуктов сгорания на нижнем КПРП может быть вычислена также по уравнению

  • (А.+1)-с_ с
  • (1.21)

стех

где Т„ в К; Т с -температура смеси до сгорания, К; Сстсх - концентрация топлива в смеси стехиометрического состава, % (об.);

Срш - средняя изобарная теплоемкость продуктов сгорания при температуре Т,„ кДж/(кг °С).

КПРП практически не зависят от размеров цилиндрического реакционного сосуда, если его диаметр больше 50 мм, а для сферического - если объем превышает 2000 см 3 .

Для определения КПРП и оптимального состава углеводородовоздушной смеси могут быть использованы графики, приведенные на рис. 1.26 .

С„,с,%(ов.)


Рис. 1.26. Концентрационные пределы распространения пламени в углеводородовоздушных смесях (Св и С») и концентрация углеводорода в смесях стехиометрического состава (Сс,«) в зависимости от мольного стехиометрического коэффициента 1^ м при И20°С Р=0,101 МПа :

  • - парафиновые; а - олефиновые;
  • ? - нафтеновые; ? - ароматические

Горючие смеси паров топлива с воздухом в надтопливном пространстве могут образоваться только в определенном интервале температур. Минимальная температура, при которой в замкнутом объеме надтопливного пространства еще может образоваться горючая смесь, способная к стационарному горению при воспламенении от внешнего источника, называется нижним температурным пределом; она соответствует нижнему КПРП. Наивысшая температура, при которой смесь паров с воздухом в надтопливном пространстве еще сохраняет способность к стационарному горению, называется верхним температурным пределом; она соответствует верхнему КПРП.Экспериментальное определение температурных пределов образования взрывоопасных смесей производится по ГОСТ 12.1.044-89 (п.4.12), расчетное - по приложению этого же стандарта.

Температуру, при которой достигается нижний температурный предел образования взрывоопасной смеси при атмосферном давлении, принято отождествлять с температурой вспышки. При температуре вспышки сгорает только образовавшаяся паровоздушная смесь, но процесс горения не стабилизируется.

Расчет температурных пределов образования горючих смесей сводится к следующим операциям. Вначале при заданном общем давлении Р и известных значениях коэффициента избытка окислителя (воздуха), соответствующих нижнему и верхнему КПРП н и а в), по уравнению (1.22) определяют

парциальные давления паров топлива Р т :

х | 0,232 о? 0 М т " ?« -

где Р - общее давление, Па; Ц - стехиометрический коэффициент, кг окислителя/кг топлива; а - коэффициент избытка окислителя; Мт - масса моля топлива, кг/кмоль; Мо - масса моля окислителя, для воздуха Мо = 28,966 кг/кмоль; у / 0 - концентрация кислорода в окислителе по массе.


Рис. 1.27.

Затем по таблицам или графикам Рц.п.=^(0 (где Р,давление насыщенных паров топлива) находят температуры, соответствующие вычисленным значениям Рт-

Если концентрационные пределы образования горючих смесей неизвестны, то температурные пределы приближенно можно рассчитать по уравнению :

1,15 1*(7,5 Р г)- 0,239 3,31

где I - в 0 С; 15% - температура выкипания 5% фракции, 0 С; Рт -давление паров топлива на КПРП (Р„ или Р„), кПа; 8„ с „ - энтропия испарения при температуре 15% и атмосферном давлении (принимается по графику рис. 1.28).


Рис. 1.28.

60 80 100 120 140 160 180 1,°С

Воспламеняющая энергия н концентрационные пределы воспламенения

Воспламеняемость однородной горючей смеси внешним тепловым источником характеризуется концентрационными пределами и энергией, необходимой для ее воспламенения.

Концентрационными пределами воспламенения (КПВ) называют такие предельные концентрации топлива в смеси, при которых местный источник зажигания (электрический разряд, нагретое тело, пламя) способен обеспечить распространение процесса горения на весь объем смеси. По аналогии с КГ1РП различают нижний и верхний КПВ. Они зависят от физикохимических свойств топлива и окислителя, энергии и вида источника зажигания, места его расположения и т.п.

Согласно Я.Б. Зельдовичу , энергия, необходимая для воспламенения однородной горючей смеси, определяется:

Я1-Т с г (Т 2 -Т с)

где рс и Т с - плотность и температура смеси; Т г - температура продуктов сгорания в начальном очаге горения; Л 7 - коэффициент теплопроводности продуктов сгорания при Тг; и„ - нормальная скорость распространения пламени; С рт - средняя

массовая изобарная теплоемкость газа в шаровом слое 8 Т, окружающем сферический начальный очаг горения; 5, - тепловая ширина фронта пламени.

Уравнение (1.24) применимо и к случаю воспламенения движущейся смеси, если коэффициент теплопроводности Л 7 заменить коэффициентом турбулентного обмена IV/" (/ - масштаб

турбулентности, V/* - пульсационная скорость), а величину ц н -скоростью распространения пламени в турбулентном потоке.

Состав смеси, соответствующий минимуму кривой О = КС,), принято называть оптимальным. Для нормальных парафиновых углеводородов концентрация топлива в смеси оптимального состава при 25°С может быть определена из соотношения :

  • 1 - метан; 2 - этан; 3 - пропан;
  • 4 - н-бутан; 5 - н-гексан; 6 - н-гептан;
  • 7 - циклопропан: 8 - диэтиловый эфир;
  • 9 - бензол

Пш повышении концентрации кислорода в окислителе оптимальный состав горючей смеси смещается в область меньшей концентрации топлива.

Зависимость оптимальной (минимальной) энергии воспламенения от давления и температуры горючей смеси описывается уравнением [ 114]:

О-опт

где Оопт - энергия воспламенения при Р и Т, Дж; СЬ - энергия воспламенения при Т = 273 К и Р = 10 5 Па.

Уравнение (1.26) имеет хорошую корреляцию с экспериментальными данными.

Связь оптимальной воспламеняющей энергии с концентрацией кислорода в окислителе описывается уравнением

где (С? 0 „„,) у/ =/ - оптимальная величина воспламеняющей энергии топливо-кислородной смеси; ~ объемная концентрация

кислорода в окислителе; п - показатель степени, он близок к единице (п ~ 0,8).

Опытные данные для метана, этана и пропана при изменении ц/ х, от 0,1 до 0,21 и давления от 0,98 до 19,6 кПа подтверждают уравнение (1.27). По-видимому, оно остается справедливым и для смесей углеводородов.

Концентрации топлива на пределах воспламенения можно рассчитать, если известны КПРП и величины (} опх и С опт по уравнениям

о,5(с; + с;)=С_ +0,15(С.(1.29)

Уравнения (1.28) и (1.29) справедливы при --

Обозначив правые части этих уравнений, соответственно, Б и 0,5А, получим

С" - С" = Б и С" + С" = А . (1.30)

С" = 0,5(Л-Б) и С; =0,5(А + В). (1.31)

В приведенных уравнениях: С в и С н - концентрации топлива в смеси на верхнем и нижнем КПРП; С в и С", - концентрации топлива в смеси на верхнем и нижнем КПВ при воспламеняющей энергии емкостного электрического заряда; С опт -концентрация топлива в смеси, соответствующей О опх.

Уравнения (1.28) и (1.29) базируются на результатах экспериментальных исследований, приведенных на рис. 1.30.

  • (с;-с > ;)-2с опт

Рис. 1.30. Область воспламенения смесей С п Н П1 +02+^ в зависимости от воспламеняющей энергии

Концентрационные пределы воспламенения зависят от скорости потока, сближаясь между собой при ее увеличении (рис. 1.31 и 1.32).

Влияние скорости потока на энергию воспламенения корректно описывается уравнением :

(2 = (?о + Аи" к (1.32)

где (Зо - энергия воспламенения неподвижной смеси, 10" 3 Дж; XV - скорость потока, м/с; А - коэффициент, устанавливаемый экспериментально.

Рис. 1.31.

Рис. 1.32. Коэффициент избытка воздуха а на КПВ бензиновоздушной смеси в зависимости от скорости потока? и давления Р [ 114]:

Температура вспышки н температура самовоспламенения

Температура вспышки - это минимальная температура, при которой образующаяся паровоздушная смесь может быть воспламенена внешним источником тепла, но процесс горения не стабилизируется. Экспериментально температура вспышки определяется в открытом или закрытом тигле по ГОСТ 12.1.044-84 (п.п. 4.3 и 4.4). Расчетное определение температуры вспышки производится по ГОСТ 12.1.044.84 (п. 4.5).

Температура вспышки на 10-15°С ниже температурного предела образования горючей смеси, способной к распространению пламени.

Для приближенного определения температуры вспышки можно использовать зависимость, представленную на рис. 1.33.


Рис. 1.33. Температура вспышки 1 В сп реактивных топлив и бензина Б-70 в зависимости от давления насыщенных паров Р„ п при 1=40°С в закрытом тигле (62]: о - топлива разного состава; - обобщающая кривая

Самовоспламенение - это процесс воспламенения горючей смеси без соприкосновения с пламенем или раскаленным телом. Минимальная начальная температура, достаточная для самовоспламенения горючей смеси, называется температурой самовоспламенения. Она зависит от химической природы топлива, состава топливовоздушной смеси, давления, адиабатич-ности процесса самовоспламенения, наличия катализаторов и ингибиторов окисления и других факторов.

Интервал времени между моментом достижения горючей смесью температуры самовоспламенения и появлением пламени называется периодом задержки самовоспламенения. При подаче жидкого топлива он охватывает процесс распыливания, нагревания и испарения капель топлива, диффузию паров топлива и кислорода и, наконец, химические реакции.

Температура и период задержки самовоспламенения связаны между собой соотношением:

где Е - эффективная энергия активации, кДж/кмоль; Е =8,31419 кДж/(кмоль К) - универсальная газовая постоянная; т - период задержки самовоспламенения при температуре Т.

Склонность углеводородов и их смесей к самовоспламенению характеризуют минимальной температурой самовоспламенения, получаемой в адиабатических условиях, когда продолжительность выдержки горючей смеси при заданных начальных условиях не лимитирует процесс самовоспламенения.

Минимальная температура самовоспламенения однозначно определяется строением молекулы. Так, например, для парафиновых углеводородов 1 св находится в прямой связи с эффективной длиной углеродной цепочки Ьц, которая вычисляется по уравнению:

  • 21>ГЛГ,
  • (1.34)

где г - число групп СН 3 в молекуле; к - число углеродных цепочек, начинающихся и оканчивающихся группой СН 3 , т* -число возможных цепочек, содержащих Ь^-атомов углерода. Зависимость 1 св =А(Ьц) приведена на рис. 1.34.


Рис. 1.34.

  • 1 - СН 4 ; 2 - С 2 Н 6 ; 3 - С 3 Н»; 10 - н - С 4 Н 10 ; 11 - н - С 5 Н 12 ;
  • 14 - н - С Л Н М; 15 - н - С7Н16; 16 - н - СкНщ; 17 - н - СдН 2 о;
  • 18 - н - С| 0 Н 22 ; 19 - н - С, 2 Н 2Й; 21 - н - С14Н30; 22 - н - С|^Н 3 4

Температура самовоспламенения смесей углеводородов не подчиняется правилу аддитивности, она, как правило, ниже вычисленной, исходя из указанного правила.

Данные о температуре самовоспламенения топливовоздушных смесей оптимального состава в зависимости от числа атомов углерода в молекуле углеводорода (для реактивных топлив в приведенной формуле) представлены на рис. 1.35. Влияние давления и концентрации кислорода в окислителе иллюстрируется данными, приведенными на рис. 1.36.


Рис. 1.35. Зависимость температуры самовоспламенения топливовоздушных смесей оптимального состава от числа атомов углеводорода п в молекуле при Р=0,101 МПа [ 124]; т - период задержки самовоспламенения; т Л -«о; Р.Т. - реактивные топлива (п-в приведенной формуле) - парафиновые; а- олефиновые; ? - нафтеновые углеводороды

Рис. 1.36. Зависимость температуры самовоспламенения топлива Т-6 от давления Р и концентрации кислорода в окислителе ф 0 2 (по данным В.В.Малышева):

2 = 0 2/(°2 +Л, г)

Температура самовоспламенения определяется способностью топлива образовывать горючие смеси в паровой фазе. Из этого следует, что температура самовоспламенения суспензион-

ных топлив определяется дисперсионной средой и загустителем. Дисперсная фаза принимает участие в процессе самовоспламенения только в части поглощения тепла при нагревании суспензии до температуры самовоспламенения жидкой фазы.

Давление взрыва в замкнутом объеме

Давление взрыва - наибольшее давление, возникающее при дефлаграционном взрыве паровоздушной смеси в замкнутом объеме при начальном давлении 0,101 МПа. Скорость нарастания давления при взрыве - производная давления взрыва по времени (с1Р/(1т) на восходящем участке зависимости Р=Й т ).

Экспериментально максимальное давление взрыва и скорость нарастания давления при взрыве паровоздушных смесей определяется по ГОСТ 12.1.044-89 (приложение 8). Расчетное определение скорости нарастания давления при взрыве проводится по ГОСТ 12.1.044-89 (приложение 12).

Давление взрыва определяется:

где Рвзр - давление взрыва, Па; Р„- начальное давление, Па; Т„, и Т п.с. - начальная температура и температура продуктов сгорания. К; шип- число молей продуктов сгорания и исходной смеси.

Максимальная скорость нарастания давления (в Па/с) рассчитывается по уравнению

где Ро - начальное давление. Па; и„ - нормальная скорость распространения пламени при Ро и То м/с; То - начальная температура смеси, К; г - радиус бомбы, м; п - Р м /Р 0 - приведенное максимальное давление взрыва; к -показатель адиабаты для испытуемой смеси; е - термокинетический показатель, зависящий от и н, давления и температуры; если значение е неизвестно, его принимают равным 0,4.

Средняя скорость нарастания давления (в Па/с) вычисляется по уравнению:

"с1Р _ ЗР 0 и ‘(я-)-я к * е ^т) с г/(л,к,е)

где ^тг,к 7 е) -функция, ее значение находят по номограмме рис. 1.37.


Рис. 1.37. Зависимость функции/(п, к. с) от приведенного давления п=Р/Р К,„ показателя адиабаты к и термокинетического показателя с испытуемой смеси (приложение к ГОСТ 12.1.044-84)

Значения тг и к находят термодинамическим расчетом или. в случае невозможности расчета, принимают к = 9,0 и к=1,4.

Чрезвычайные и аварийные ситуации

Авария - опасное техногенное происшествие, создающее на объекте, определенной территории или акватории угрозу жизни и здоровью людей и приводящее к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного или транспортного процесса, а также к нанесению ущерба окружающей природной среде (ГОСТ Р 22.0.05-94).

Авария представляет собой разрушительное неконтролируемое высвобождение энергии или химически (биологически, радиационно) активных компонентов. В зависимости от источника возникновения различают чрезвычайные ситуации (ЧС) природного, техногенного и природно-техногенного характера. На рис. 1.38 показан относительный рост числа природных, техногенных и природно-техногенных аварий и катастроф в России. На рис. 1.39 представлена динамика числа всех техногенных аварий в России за период 1990-94 гг. Из рисунка видно, что рост числа ЧС происходит не плавно, а скачкообразно, причем всплески приходятся на периоды сразу после социальных потрясений (август 1991 г., октябрь 1993 г.) .

Особенно резко в последние годы увеличилось число техногенных ЧС, в том числе и в авиации.

Потенциальными объектами аварий являются летательные аппараты, а также хранилища и склады взрыво- и пожароопасных нефтепродуктов, размещенных на территории аэропорта, пункты заправки и технического обслуживания, пункты ремонта. Причиной аварийных ситуаций могут быть утечки нефте-

продуктов через уплотнительные узлы запорной арматуры, перекачивающих насосов, трубопроводов и наливных устройств; через вентиляцию газового пространства резервуаров; перелив резервуаров, цистерн и баков; зачистка резервуаров; коррозионное разрушение резервуаров и коммуникаций.

Для хранения и транспортировки нефтепродуктов эксплуатируются различные емкости. Безопасность эксплуатации емкостей определяется их обеспеченной прочностью. Однако аварии на таких объектах могут возникать вследствие недостатков существующей системы контроля и мониторинга состояния конструкций, а также отсутствия нормативнотехнической документации.

Безопасность эксплуатации хранилищ нефтепродуктов должна обеспечиваться при проектировании, возведении и эксплуатации. Такой подход диктуется анализом приемосдаточной и эксплуатационной документации, а также причин аварийных ситуаций. Важной задачей, решение которой позволит повысить надежность эксплуатируемых хранилищ, является проведение их научно-обоснованных комплексных технических освидетельствований и оснащение системой диагностики и оперативного контроля состояния металлических, фундаментных, теплоизоляционных конструкций и технологического оборудования .

Для безопасного управления потоками нефтепродуктов большое значение имеет исправность трубопроводной технологической арматуры: запорных, дроссельных, предохранительных устройств; регулирующей арматуры; арматуры обратного действия (для предотвращения возможности движения продукта, обратного рабочему); аварийной и отсечной арматуры (для автоматического перекрытия потока к аварийному участку или его отключения), конденсатоотводящей и др.

Число аварий


Рис. 1.38.

  • 1 - пг "родные;
  • 2 - природно-техногенные;
  • 3 - техногенные

Рис. 1.39.

При разгерметизации оборудования происходит истечение продукта и его быстрое испарение с образованием концентра-

ций взрыво- и пожароопасных газопаровоздушных смесей. Аварийные выбросы или утечки парогазовых смесей приводят к образованию облаков, которые могут детонировать. Детонация парогазовых и аэродисперсных систем рассмотрена в работе . Возникновение детонации в облаках большого размера объясняется следующими механизмами. Первый из них учитывает возможное действие интенсивного теплового излучения от пламени большой протяженности в облаках, предварительно перемешанных турбулентными газовыми потоками.

Второй механизм возникновения детонации предполагает ускорение пламен в больших облаках из-за разницы ускорений элементарных объемов сгоревшего газа и свежей смеси в турбулентном пламени. Эта разница возникает под действием средних градиентов давления в пламени из-за разной плавучести элементарных объемов газа разной плотности, что приводит к дополнительной турбулизации течения и появлению обратной связи. Этот механизм положительной обратной связи, определяемый разностью плотностей в различных зонах облака, может значительно интенсифицировать ускорение пламени.

Воспламенение сопровождается яркой высокотемпературной вспышкой. Наиболее приемлемой геометрической фигурой вспыхнувшей парогазовой смеси является фигура неправильного шара или эллипса (огненный шар). Под огненным шаром (ОШ) понимают продукт внезапного испарения или утечки га-зофицированного горючего (или газа), сопровождающийся их вспышкой и последующим нормальным или дефлаграционным горением. Для многочисленных углеводородных горючих линейного и циклического разрядов в диапазоне плотностей от 700 до 1000 кг/м 3 в приведены соотношения для диаметра огненного шара:

где М - масса горючего в ОШ, кг.;

Тф - фактическая температура в ОШ (в облаке), 0 С;

Треп - реперная (опорная) температура, °С.

Диапазон коэффициента 4,2н-5,3 зависит от типа горючего и условий образования облака.

Для времени жизни облака при его естественном сгорании выражение имеет вид:

т = 0М-*1м-1±.

Эти зависимости приведены на рис. 1.40 и 1.41.


Рис. 1.40.


Рис. 1.41.

Имеется большая опасность взрыва парогазовоздушных смесей в замкнутом объеме. В табл. 1.7 приведены пределы детонации углеводородов в воздухе в замкнутом объеме и открытом пространстве, которые свидетельствуют о большей опасности взрыва газа или парогазовых смесей в замкнутом объеме. Это объясняется как процессами ускорения реакции за счет усиления автокатализа, так и за счет усиления отраженных волн при начавшемся ь_арийном процессе и из-за ряда всегда существующих кинетических причин. Повышенная легкость возбуждения детонации в сосудах обусловлена способностью стенок генерировать турбулентность в потоке перед пламенем, что ускоряет переход горения в детонацию.

Пределы детонации углеводородов в воздухе

Взрыв скопившейся газовой смеси может произойти под действием случайной искры. При открытом наливе нефтепродукта также возможен взрыв вследствие статического разряда, в частности, при отсутствии заземляющего устройства. Наиболее частой причиной взрыва является искра, в том числе в результате накопления статического электричества. Электрическая искра может возникать вообще без всяких проводников и сетей. Она опасна тем, что возникает в самых неожиданных местах: на стенках цистерн, на шинах автомобиля, на одежде, при ударе, при трении и т.п. Другой причиной взрыва являются халатность и недисциплинированность работников.

Там, где возможно образование парогазовоздушных смесей, необходимо обеспечивать надежную молниезащиту, защиту от статического электричества, предусматривать мероприятия против искрения электроприборов и другого оборудования.

При авариях, связанных со взрывами, происходят разрушения окружающих объектов и имеют место поражения людей. Разрушения являются следствием призантного действия продуктов взрыва и воздушной ударной волны. В данном случае основными поражающими факторами являются ударная волна, свето-тепловое излучение и токсические нагрузки (угарный газ). Люди, находящиеся на удалении 5 м, получают ожоги 1-й степени и другие поражения.

Аварии, связанные со взрывами, часто сопровождаются пожарами, которые могут вызвать катастрофические последствия и последующие более мощные взрывы и более сильные разрушения. Причины пожаров, как правило, те же, что и взрывов. При этом взрыв может быть причиной или следствием пожара, и наоборот, пожар может быть причиной или следствием взрыва.

Пожар - это стихийно развивающееся г.рение, не предусмотренное технологическими процессами. Горение нефтепродуктов может происходить в резервуарах, производственной аппаратуре и при разливе на открытых площадках. При пожаре нефтепродуктов в резервуарах могут возникать вгрывы, вскипание и их выброс, а в результате - разливы горячей жидкости. Большую опасность представляют выбросы и вскипание нефтепродуктов, что связано с наличием воды в них, и характеризуется бурным горением вспенившейся массы продуктов. При вскипании резко увеличиваются температура (до 1500° С) и высота пламени .

Для оценки степени поражения объекта обычно пользуются так называемой пороговой кривой, связывающей поток теплосветовой энергии ц (тепловой поток) и полную энергию О, падаюшие на единицу поверхности (рис. 1.42).


Рис. 1.42.

При больших временах теплового воздействия, превышающих время возможного неповреждаемого существования объекта, порог поражения будет определяться исключительно тепловым (термосветовым) потоком я. При импульсных воздействиях короткой экспозиции порог будет определяться в основном энергией О. Значения я и О, превышающие пороговые, будут вызывать безусловные поражения объекта.

Если же либо я, либо О меньше, чем их пороговые значения, то типичное поражение отсутствует и возможны лишь легкие дискомфортные ощущения. Например, при увеличении времени действия излучения от 0,5 до 2 с, я уменьшается от 120 до 30 единиц, т.е. при незначительном росте О даже при увеличении времени воздействия в 4 раза, поражающие травмы

отсутствуют, и человек может ощущать только легкое дискомфортное состояние.

Однако величина общей энергии О, падающей на объект поражения, в тот же промежуток времени растет примерно от 10 до 25 ед. (^.

Таким образом, линия К, откликаясь на взаимосвязанные изменения я и О, формирует зону (область) поражения, обозначенную на рисунке справа от линии К.

Одним из наиболее неприятных последствий поражения лучистой энергией является ожог «палочек» и «колбочек» глаза.

На рис. 1.43 приводится зависимость я от т, а также Т от т, определяющая области терпимой и нетерпимой боли при образовании термосветовых ожогов различной степени. Критерий, реализованный на приводимом рисунке, основан на том, что при тепловом облучении нестерпимая боль наступает тогда, когда температура слоя кожи толщиной около 0,14-0,15 мм (под поверхностью верхнего эпителиального слоя), достигнет или превзойдет температуру 45° С.

После устранения облучения (но не более 20-30 с), резкая боль спадает, а затем, как правило, исчезает вовсе. Повышение температуры указанного слоя на 4-10 градусов и более вызывает болевой шок и очевидные ожоги кожи.

Область терпимой боли, показанная на графике, определяется тем, что в момент воздействия излучения возникает биологический защитный рефлекс, вызывающий усиление притока крови из периферийных участков организма, что препятствует локальному повышению температуры до порогового уровня. При воздействии высокой дозы теплового напора этот физиологический механизм уже не может обеспечить необходимый теплоотвод, и организм претерпевает патологические, а иногда и запредельные тепловые нагрузки. Из характера линий рис. 1.42 видно, что существует определенная количественная

доза излучения q и температуры Т, которая вызывает тепловое поражение и возникновение нестерпимой боли при обеспечении этой дозы необходимым временем воздействия.

Продолжительность воздействия, с Рис 1.43. Пределы теплосветовоП травмируемостп

Аварии с летательными аппаратами (ЛА) происходят в основном из-за неисправности агрегатов, в первую очередь, - отказа двигателя, террористических актов, возникшего пожара, и сопровождаются взрывами. Взрыв может произойти в воздухе или при ударе о землю. При падении ЛА на жилые районы могут пострадать люди, сооружения и др. Примеры авиационных аварийных ситуаций, их анализ приведены в работах .

Одной из главных опасностей в авиации является возможность возникновения пожара при аварийном приземлении. Топливо, вытекающее из поврежденных баков, может воспламениться от искры, возникшей вследствие трения, от горячих

поверхностей или открытых пламен. Образовавшийся очаг горения при этом быстро распространяется по всем зонам, в которых величины отношения пар/топливный воздух находятся в пределах области воспламеняемости. Один из методов снижения опасности возникновения пожара заключается в применении загущенных топлив, которые медленнее растекаются и обладают меньшей летучестью, чем обычные жидкие топлива. При повреждении бака с загущенным топливом резко снижается как скорость растекания топлива, так и скорость образования воспламеняющихся аэрозолей. Это позволяет увеличить период времени, в течение которого может быть произведена эвакуация пассажиров.

Чрезвычайные и аварийные ситуации наносят большой материальный ущерб и усугубляют экологические проблемы. При авариях, сопровождаемых взрывами и пожарами, происходит сильное механическое, термическое и химическое воздействие па окружающую природную среду. При этом резко увеличиваются выбросы загрязняющих веществ; поверхность земли засоряется обломками ЛЛ, остатками топлив, продуктами сгорания; наносится существенный урон природному ландшафту, флоре, фауне; гибнут пастбища, плодородные почвы.

Механическое воздействие характеризуется нарушением верхнего (плодородного) слоя почвы за счет се поверхностной и глубинной деструкции, воздействия энергии взрыва (ударной волны); нарушением травяного покрова, повреждением пли гибелью кустарников, деревьев и иной растительности. Изменяется структура верхнего плодородного слоя, газовый и водный обмен, капиллярная структура.

Меры, направленные на повышение безопасности при чрезвычайных ситуациях, принято делить на две категории. К первой относят мероприятия, проводимые после возникпове-

ния чрезвычайном ситуации. Эл1 мероприятия обычно называют оперативными, и сводятся они, по существу, к защите населения и ликвидации последствий ЧС. Ко второй группе мер относятся мероприятия, проводимые заблаговременно. К ним можно отнести повышение надежности технологического оборудования, снижение запасов опасных веществ па объектах, вывод опасного объекта, заблаговременные мероприятия по защите людей.

Важное значение имеет активная система обеспечения безопасности полета (АСОБП), которая является элементом бортовой «интеллектуальной» системы поддержки летчика, известной в авиационной практике под названием «помощник пилота», предназначенной для работы как в штатных, так и в нештатных полетных ситуациях . АСОБП выдает предупреждающие сигналы об угрозе безопасности полета, а также оперативно советующую информацию в виде «подсказок» по управлению самолетом и его бортовым комплексом в целях предупреждения выхода Л А на критические режимы полета. Для предотвращения столкновения с земной поверхностью и между самолетами АСОБП формирует пространственные траектории «разведения».

Одним из эффективных направлении работ по предотвращению авиационных происшествий является полное, глубокое и объективное расследование уже свершившихся событий и разработка на этой основе рекомендаций по исключению их повторяемости .

Эффективность такой работы зависит не только от достаточного уровня ресурсов, но и от исчерпывающих полномочий органа, проводящего независимое расследование, позволяющих воздействовать па любые сферы авиатранспортной системы (производство, проектирование, испытания, сертификация, эксплуатация, ремонт, нормативная база и т.п.).

Стандарт 5.4. Приложения 13 к Конвенции о международной гражданской авиации гласит: «Полномочному органу по расследованию авиационных происшествий предоставляется независимость в проведении расследования и неограниченные полномочия на его проведение». Это требование реализовано и в российских Правилах расследования, утвержденных Правительством РФ. Образованный Соглашением Межгосударственный авиационный комитет (МАК) получил от глав государств и правительств СНГ право независимого расследования авиационных происшествий. С 1992 года специалистами МАК проведено расследование более 270 авиационных аварий, в том числе более 50 международных, включая расследования событий с самолетами западного производства.

Таких специализированных центров расследования авиационных происшествий в мире в настоящее время насчитывается семь (США, Франция, Великобритания, Канада, Германия, Австралия и МАК).

Немаловажное значение имеет информационное обеспечение государств данными по отказам и неисправностям авиационной техники и ошибочным действиям экипажей. Пользуясь этими данными, авиационные власти каждого государства могут принимать превентивные меры.

1) Влажность материала.

2) Влияние ориентации образца в пространстве.

При отрицательных углах наклона (направление движение пламени сверху вниз) скорость распространения пламени или не изменяется или же слабо уменьшается. При увеличении положительного угла наклона (направление движения пламени снизу вверх) свыше 10-15 0 скорость распространения пламени резко возрастает.

3) Влияние скорости и направления воздушных потоков.

С увеличением скорости попутного ветра улучшается газообмен, уменьшается угол наклона пламени к образцу. Скорость распространения возрастает.

Поток воздуха, направленный против направления движения пламени, оказывает двоякое влияние на скорость распространения пламени.

В результате аэродинамического торможения и охлаждения прогретых участков поверхности перед фронтом пламени скорость распространения пламени снижается. С другой стороны, поток воздуха интенсифицирует смешение продуктов пиролиза с окислителем, быстрее происходит образование гомогенной горючей смеси, носик пламени приближается к поверхности твердого материала, что, в свою очередь, приводит к дальнейшему увеличению интенсивности, и это ускоряет распространение пламени.

4) Влияние геометрических размеров образца.

Различают термически толстые и термически тонкие образцы.

Термическая толщина - это толщина слоя твердого материала, прогретого перед фронтом пламени выше начальной температуры к моменту распространения пламени на данный участок поверхности.



5) Влияние материала подложки.

Если горючий материал соприкасается с материалом (подложкой), теплофизические свойства которого отличаются от воздуха, то это также будет влиять на скорость распространения пламени (наклеенная бумага, изоляция проводов и т.п.). Если l подл > l гор. мат. , то тепло будет интенсивно отводиться от образца, и скорость распространения будет меньше, чем в случае отсутствия подложки.

6) Влияние содержания кислорода в окружающей среде.

С увеличением содержания кислорода в окружающей среде скорость распространения пламени увеличивается.

7. Влияние начальной температуры образца.

Для древесины увеличение начальной температуры до 230–250 о С (температурная область пиролиза) приводит к резкому увеличению u л.

Выгорание твердых материалов

Одновременно с распространением пламени по поверхности материала начинается процесс его выгорания. Закономерности выгорания твердых материалов существенно зависят от характера превращения твердой фазы в газообразные продукты.

Если разложение твердой фазы протекает в узком приповерхностном слое без образования углистого слоя, то в этом случае горение протекает с постоянной скоростью. На поверхности твердой фазы после воспламенения устанавливается постоянная температура, равная температуре кипения или возгонки вещества.

Механизм горения твердых веществ, протекающий с образованием углистого остатка на поверхности горения, более сложен. Так горят практически все вещества растительного происхождения, некоторые пластмассы, содержащие в своем составе негорючие или трудногорючие наполнители (тальк, сажу и т.п.). К наиболее распространенным горючим веществам растительного происхождения такого типа относится древесина. В момент воспламенения за счет теплового потока от зоны пламени температура поверхностного слоя древесины быстро возрастает до 450-500 о С. Происходит интенсивное разложение веществ с образованием летучих продуктов и древесного угля, при этом температура на поверхности повышается до 600 о С.

По глубине горящей древесины имеют место области с различными физическими и физико-химическими характеристиками. Условно их можно разделить на 4 зоны:

I - древесный уголь, состоящий на 99% из углерода;

II - древесина с различной степенью пиролизованности;

III - непиролизованная, сухая древесина;

IV - исходная древесина.

По мере выделения летучих продуктов из твердой фазы при горении древесины протекает переугливание материала на все большую глубину. Рост толщины углистого слоя обусловливает повышение его термического сопротивления и, следовательно, снижает скорость прогрева и пиролиза еще не разложившихся слоев древесины, и скорость пламенного горения постепенно снижается. Пламенное горение древесины прекращается при снижении массовой скорости выделения летучих до 5 г/(м 2 ·с). Толщина слоя угля при этом достигает 15-20 мм.

Прекращение пламенного горения древесины открывает доступ кислорода воздуха к нагретому до температуры 650-700 о С углю. Начинается второй этап горения древесины - гетерогенное окисление углистого слоя в основном по реакции С + О 2 ® СО 2 + 33000 кДж/кг, температура углистого слоя возрастает до 800 о С, и процесс гетерогенного горения угля еще более интенсифицируется.

Реальная картина перехода гомогенного горения в гетерогенное несколько отличается от приведенной.

Основным количественным параметром, характеризующим процесс выгорания твердых материалов, является массовая скорость выгорания, которая представляет собой один из параметров, обусловливающих динамику пожара.

Приведенная массовая скорость выгорания представляет собой количество вещества, выгорающего в единицу времени с единицы площади пожара.

Горение металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие.

Летучие металлы имеют Т пл < 1000 К, Т кип < 1500 К. К ним относятся щелочные металлы (литий, натрий, калий и др.) и щелочноземельные (магний, кальций).

Нелетучие металлы имеют Т пл >1000 К, Т кип >2500 К. Механизм горения во многом определяется свойствами оксида металла. Т пл летучих металлов ниже Т пл их оксидов. При этом последние представляют собой достаточно пористые образования.

При поднесении ИЗ к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу и он нагревается до Т кип. Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида, но и в окружающее пространство, где, конденсируясь, образуют твердые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидсидной пленки на поверхности металла приводит к взрыву частицы. Это явление, особенно часто наблюдающееся при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее разрывом. Это, естественно, приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсионной среды (воздух и т.д.) и твердой дисперсной фазы (мука, сахар, древесина, уголь и т.д.).

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1) Концентрация пыли.

Как и в случае горения гомогенной газовоздушной смеси, максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава. Для торфяной пыли это 1,0-1,5 кг/м 3 .

2) Зольность.

При увеличении зольности уменьшается концентрация горючего компонента и, соответственно, уменьшается скорость распространения пламени.

С уменьшением содержания кислорода скорость распространения пламени снижается.

Классификация пылей по взрывопожарной опасности.

По взрывопожарной опасности пыли делятся на классы:

I класс - наиболее взрывоопасная - j н до 15 г/м 3 ;

II класс - взрывоопасная - 15 г/м 3 < j н < 65 г/м 3 ;

III класс - наиболее пожароопасная - j н > 65 г/м 3 ; Т св до 250 о С;

IV класс - пожароопасная - j н > 65 г/м 3 ; Т св > 250 о С.

ДИНАМИКА РАЗВИТИЯ ПОЖАРА

Под динамикой пожара понимают совокупность законов и закономерностей, описывающих изменение основных параметров пожара во времени и пространстве. О характере пожара можно судить по совокупности большого количества его параметров: по площади пожара, по температуре пожара, скорости его распространения, интенсивности тепловыделения, интенсивности газообмена, интенсивности задымления и т. д.

Параметров пожара так много, что на одних видах пожаров одни из них являются основными, а на других - вторичными. Все зависит от того, какие цели поставлены в исследование того или иного вида пожара.

В качестве основных параметров, изменяющихся во времени, для изучения динамики пожара принимаем площадь пожара, температуру пожара, интенсивность газообмена и задымления, скорость распространения пожара. Эти параметры пожара наиболее доступны измерению, анализу, расчетам. Они служат исходными данными для определения вида необходимой техники и расчета сил и средств при тушении пожаров, проектировании автоматических систем пожаротушения и т. п.

С момента возникновения пожара, при свободном его развитии, до полного его прекращения пожар в помещении можно разделить на фазы.

Фазы пожара

I. Фаза загорания.

Пламя возникает от постороннего источника зажигания на небольшом участке и медленно распространяется. Вокруг зоны горения образуется конвективный газовый поток, который обеспечивает необходимый газообмен. Поверхность горючего материала прогревается, размер факела увеличивается, увеличивается газообмен, растет лучистый тепловой поток, который поступает в окружающее пространство и на поверхность горючего материала. Продолжительность фазы загорания колеблется от 1 до 3 мин.

II. Фаза начала пожара.

Температура среды в помещении медленно растет. Весь предыдущий процесс повторяется, но уже с большей интенсивностью. Продолжительность второго этапа примерно 5-10 мин.

III. Фаза объемного развития пожара - бурный процесс нарастания всех перечисленных параметров. Температура в помещении достигает 250 -300°С. Начинается «объемная» фаза развития пожара и фаза объемного распространения пожара. При температуре газовой среды в помещении 300°С происходит разрушение остекления. Догорание при этом может происходить и за пределами помещения (огонь вырывается из проемов наружу). Скачком изменяется интенсивность газообмена: она резко возрастает, интенсифицируется процесс оттока горячих продуктов горения и приток свежего воздуха в зону горения.

IV.Фаза пожара .

На данной фазе температура в помещении может кратковременно снизиться. Но в соответствии с изменением условий газообмена резко возрастают такие параметры пожара, как полнота сгорания, скорость выгорания и распространения процесса горения. Соответственно резко возрастает и общее тепловыделение на пожаре. Температура, несколько снизившаяся в момент разрушения остекления из-за притока холодного воздуха, резко возрастает, достигая 500 - 600 °С. Процесс развития пожара бурно интенсифицируется. Увеличивается численное значение всех ранее упомянутых параметров пожара. Площадь пожара, среднеобъемная температура в помещении (800-900 °С), интенсивность выгорания пожарной нагрузки и степень задымления достигают максимума.

V. Фаза стационарного горения.

Параметры пожара стабилизируются. Это обычно наступает на 20-25 мин пожара и, в зависимости от величины пожарной нагрузки, может длиться 20-30 мин.

VI. Фаза затухания.

Интенсивность горения постепенно снижается, т.к. основная часть пожарной нагрузки уже выгорела. В помещении накопилось большое количество продуктов горения. Среднеобъемная концентрация кислорода в помещении снизилась до 16-17 %, а концентрация продуктов горения, препятствующих интенсивному горению, возросла до предельного значения. Интенсивность лучистого переноса тепла к горючему материалу уменьшилась из-за снижения температуры в зоне горения. Из-за повышения оптической плотности среды интенсивность горения медленно снижается, что ведет к снижению всех остальных параметров пожара. Площадь пожара не сокращается: она может расти или стабилизироваться.

VII. Фаза догорания.

Для этой заключительной фазы пожара характерно медленное тление, после чего через некоторое, иногда достаточно продолжительное, время горение прекращается.

Основные параметры пожара

Рассмотрим количественно некоторые основные параметры пожара, определяющие динамику его развития. Определим интенсивность тепловыделения на пожаре, так как это один из основных параметров процесса горения:

Q=βQ р н V м ’Sп, (кДж/с)

где β и Q р н - постоянные (коэффициент недожога и низшая теплота сгорания пожарной нагрузки);

V м ¢ - приведенная массовая скорость выгорания;

S п – площадь пожара;

V м ¢ и S п зависят от времени развития пожара, темпераыура пожара, интенсивности газообмена и др.

Приведенную массовую скорость выгорания V м ¢ определяем по формуле:

v м ¢ = (а×Т п +b×I г) v м o ¢

где а, b - эмпирические коэффициенты;

v м o ¢ - приведенная массовая скорость выгорания пожарной нагрузки для данного вида горючего материала;

Т п - среднее значение температуры пожара;

I г - интенсивность газообмена.

Зависимость площади пожара от основных параметров его развития имеет вид:

S п = k (v р ∙ τ) n

где к и n – коэффициенты, зависящие от геометрической формы площади пожара;

v р – линейная скорость распространения пожара;

τ – время его свободного развития.

k = π; n = 2 k = ; n = 2 k = 2а; n = 1

k = ; n = 2 k = 2а; n = 1

Линейная скорость распространения пожара зависит от вида горючей нагрузки, средней температуры пожара и интенсивности газообмена:

v p = (а 1 T п + b 1 I г)v po

где а 1 и b 1 - эмпирические коэффициенты, устанавливающие зависимость линейной скорости распространения пожара от средней температуры и интенсивности газообмена, численное значение которых определяется опытным путем для каждого конкретного вида горючего;

v р o - линейная скорость распространения горения для данного вида горючего.

По мере развития пожара температура пожара и интенсивность газообмена будут расти, увеличивая линейную скорость распространения горения и приведенную массовую скорость выгорания.

Тепловой режим на пожаре

Возникновение и скорость протекания тепловых процессов зависят от интенсивности тепловыделения в зоне горения, т.е. от теплоты пожара. Количественной характеристикой изменения тепловыделения на пожаре в зависимости от различных условий горения служит температурный режим. Под температурным режимом пожара понимают изменение температуры во времени. Определение температуры пожара как экспериментальным, так и расчетным методами чрезвычайно сложно. Для инженерных расчетов при решении ряда практических задач температуру пожара определяют из уравнения теплового баланса. Баланс тепла на пожаре составляется не только для определения температуры пожара, но и для выявления количественного распределения тепловой энергии. В общем случае тепловой баланс пожара для данного момента времени может быть представлен следующим образом:

Q п = Q пг +Q к +Q л

где Q п - тепло, выделяющееся на пожаре, кДж;

Q пг - тепло, содержащееся в продуктах горения, кДж;

Q к - тепло, передаваемое из зоны горения конвекцией воздуху, омывающему зону, но не участвующему в горении, кДж;

Q л – тепло, передаваемое из зоны горения излучением.

Для открытых пожаров установлено, что доля тепла, передаваемого из зоны горения излучением и конвекцией, составляет 40-50% от Q п. Оставшаяся доля тепла (60-70% от Q п) идет на нагрев продуктов горения. Таким образом, 60-70% от теоретической температуры горения данного горючего материала дадут приближенное значение температуры пламени. Температура открытых пожаров зависит от теплотворной способности горючих материалов, скорости их выгорания и метеорологических условий. В среднем максимальная температура открытого пожара для горючих газов составляет 1200 - 1350°С, для жидкостей – 1100 - 1300°С и для твердых горючих материалов органического происхождения – 1100 - 1250°С.

При внутреннем пожаре на температуру влияет больше факторов: природа горючего материала, величина пожарной нагрузки и ее расположение, площадь горения, размеры здания (площадь пола, высота помещения и т.д.) и интенсивность газообмена (размеры и расположение проемов). Рассмотрим подробнее влияние перечисленных факторов.

Пожар можно разделить на три характерных периода по изменению температуры: начальный, основной и заключительный.

Начальный период - характеризуется сравнительно невысокой среднеобъемной температурой.

Основной период - в течение его сгорает 70-80 % общей нагрузки горючих материалов. Окончание этого периода происходит, когда среднеобъемная температура достигает наибольшего значения или уменьшается не более чем до 80% от максимального значения.

Заключительный период - характеризуется убыванием температуры вследствие выгорания пожарной нагрузки.

Рис 9.1. Изменение температуры внутреннего пожара во времени: 1 - кривая конкретного пожара; 2 - стандартная кривая

Поскольку скорость роста и абсолютное значение температуры пожара в каждом конкретном случае имеют свои характерные значения и особенности, введено понятие стандартной температурной кривой (рис. 21.2), обобщающей наиболее характерные особенности изменения температуры внутренних пожаров. Стандартная температура описывается уравнением.

3. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ В ГАЗОВЫХ СМЕСЯХ

Скорость распространения пламени при горении твердых, жидких и газообразных веществ представляет практический интерес в плане предупреждения пожаров и взрывов. Рассмотрим скорость распространения пламени в смесях горючих газов и паров с воздухом. Зная эту скорость, можно определить безопасные скорости газовоздушного потока в трубопроводе, шахте, вентиляционной установке и других взрывоопасных системах.

3.1. СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ

В качестве примера на рис. 3.1 приведена схема вытяжной вентиляции в угольной шахте. Из штреков шахты 1 по трубопроводу 2 осуществляется удаление запыленной смеси воздуха и угольной пыли, а в ряде случаев – выделившегося в угольных пластах метана. При возникновении очага возгорания, фронт пламени 3 будет распространяться в сторону штреков 1. Если скорость движения горючей смеси w будет меньше скорости распространения фронта пламени и относительно стенок трубки, то пламя распространится в шахту и приведет к взрыву. Поэтому для нормальной работы системы вентиляции необходимо соблюдение условия

w > u.

Скорость удаления взрывоопасной смеси должна быть больше скорости распространения фронта пламени. Это позволит не допустить попадания пламени в штреки шахты.

Рис. 3.1. Схема распространения пламени в шахте:

1 – шахта; 2 – трубопровод; 3 – фронт пламени

Теория распространения пламени, развитая в работах Я.Б. Зельдовича и Д.А. Франк-Каменецкого, основана на уравнениях теплопроводности, диффузии и химической кинетики. Воспламенение горючей смеси всегда начинается в одной точке и распространяется по всему объему, занимаемому горючей смесью. Рассмотрим одномерный случай – трубку, заполненную горючей смесью (рис. 3.2).

Если смесь поджечь с одного конца трубки, то узкий фронт пламени будет распространяться вдоль трубки, отделяя продукты горения (позади фронта пламени) от свежей горючей смеси. Фронт пламени имеет вид колпачка или конуса, обращенного выпуклой частью в сторону движения пламени. Фронт пламени представляет собой тонкий газовый слой шириной (10 -4 ÷10 -6) м. В этом слое, который называется зоной горения, протекают химические реакции горения. Температура фронта пламени в зависимости от состава смеси составляет Т = (1500÷3000) К. Выделяющаяся теплота горения расходуется на нагрев продуктов сгорания свежей горючей смеси и стенок трубки за счет процессов теплопроводности и излучения.

Рис. 3.2. Схема распространения фронта пламени в трубке

При движении фронта пламени в трубке в горючей смеси возникают волны сжатия, которые создают вихревые движения. Завихрения газов искривляют фронт пламени, не изменяя его толщины и характера протекающих в нем процессов. На единице поверхности фронта пламени всегда сгорает одно и тоже количество вещества в единицу времени . Величина является постоянной для каждой горючей смеси и называется массовой скоростью горения. Зная площадь фронта пламени S , можно рассчитать массу вещества М , сгораемого во всем фронте горения в единицу времени:

Каждый элемент фронта пламени dS перемещается относительно свежей смеси всегда по направлению нормали к фронту пламени в данной точке (рис. 3.2), причем скорость этого перемещения:

где – плотность свежей горючей смеси.

Величина называется нормальной скоростью распространения пламени и имеет размерность м/с. Она является постоянной величиной процесса горения данной смеси и не зависит от гидродинамических условий, сопутствующих процессу горения. Нормальная скорость распространения пламени всегда меньше наблюдаемой скорости и , то есть скорости перемещения фронта горения относительно стенок трубки:

u n < u .

Если фронт пламени плоский и направлен перпендикулярно оси трубки, то в этом случае наблюдаемая и нормальная скорость распространения пламени будут одинаковы

u n = u .

Площадь выпуклого фронта пламени S вып всегда больше площади плоского фронта S пл , поэтому

> 1.

Нормальная скорость распространения пламени u n для каждой горючей смеси зависит от примеси инертных газов, температуры смеси, влажности и других факторов. В частности, предварительный подогрев горючего газа увеличивает скорость распространения пламени. Можно показать, что скорость распространения пламени u n пропорциональна квадрату абсолютной температуры смеси:

u n .= const · T 2 .

На рис. 3.3 приведена зависимость скорости распространения пламени в горючей смеси „воздух – угарный газ” в зависимости от концентрации СО. Как следует из приведенных графиков, скорость распространения пламени возрастает с увеличением температуры смеси. Для каждого значения температуры скорость распространения пламени имеет максимум в области концентрации угарного газа СО, равной ~ 40%.

На скорость распространения пламени влияет теплоемкость инертного газа. Чем больше теплоемкость инертного газа, тем больше он снижает температуру горения и тем сильнее уменьшает скорость распространения пламени. Так, если смесь метана с воздухом разбавить углекислым газом, то скорость распространения пламени может уменьшиться в 2÷3 раза. На скорость распространения пламени в смесях оксида углерода с воздухом оказывает большое влияние влага, содержащаяся в смеси, наличие сажевых частиц и примеси инертных газов.

Рис. 3.3. Зависимость скорости распространения пламени

от концентрации угарного газа в смеси

Нормальная скорость распространения пламени - скорость перемещения фронта пламени относительно несгоревшего газа в направлении, перпендикулярном к его поверхности.

Значение нормальной скорости распространения пламени следует применять в расчетах скорости нарастания давления взрыва газо- и паровоздушных смесей в закрытом, негерметичном оборудовании и помещениях, критического (гасящего) диаметра при разработке и создании огнепреградителей, площади легко сбрасываемых конструкций, предохранительных мембран и других разгерметизирующих устройств; при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004 и ГОСТ 12.1.010.

Сущность метода определения нормальной скорости.распространения пламени заключается в приготовлении горючей смеси известного состава внутри реакционного сосуда, зажигании смеси в центре точечным источником, регистрации изменения во времени давления в сосуде и обработке экспериментальной зависимости “давление-время” с использованием математической модели процесса горения газа в замкнутом сосуде и процедуры оптимизации. Математическая модель позволяет получить расчетную зависимость “давление-время”, оптимизация которой по аналогичной экспериментальной зависимости дает в результате изменение нормальной скорости в процессе развития взрыва для конкретного испытания.

Нормальной скоростью горения называют скорость распространения фронта пламени по отношению к несгоревшим реагентам. Скорость горения зависит от ряда физико-химических свойств реагентов, в частности теплопроводности и скорости химической реакции, и имеет вполне определенное значение для каждого горючего (при постоянных условиях горения). В табл. 1 приведены скорости горения (и пределы воспламенения) некоторых газообразных смесей. Концентрации горючего в смесях определены при 25°С и нормальном атмосферном давлении. Пределы воспламенения за отмеченными исключениями получены при распространении пламени в трубе диаметром 0,05 м, закрытой с обеих сторон. Коэффициенты избытка горючего определены как отношение объемных содержаний горючего в реальной смеси к стехиометрической смеси (j1) и к смеси при максимальной скорости горения (j2).

Таблица 1

Скорости горения конденсированных смесей (неорганический окислитель + магний)

Лист
№ докум.
Подпись
Дата
Лист
ТГиВ 20.05.01.070000.000 ПЗ
41,6
1,60 28,8 74,9 2,48 39,4 KNO3 37,6 0,74 12,5 75,5 1,30 20,0 Ca(NO3)2 42,6 0,46 73,1 1,00 Ba(NO3)2 31,8 0,34 62,8 0,74 Sr(NO3)2 36,5 0,32 6,4 65,4 0,72 12,3 Pb(NO3)2 26,8 0,26 60,2 0,70 NaClO4 44,3 0,24 78,0 0,96 КСlO4 41,3 0,23 4,2 77,1 0,68 10,9 NH4ClO4 29,2 0,22 3,6 79,3 0,42 6,5

Как видно, при горении воздушных газовых смесей при атмоферном давлении u mах лежит в пределах 0,40-0,55 м/с, а – в пределах 0,3-0,6 кг/(м2-с). Лишь для некоторых низкомолкулярных непредельных соединений и водорода u mах лежит в пределах 0,8-3,0 м/с, а достигает 1–2 кг/ (м2с). По увеличению и mах исследованные горючие в смесях с воздухом можно

расположить в следующий ряд: бензин и жидкие ракетные топлива – парафины и ароматические соединения – оксид углерода – циклогексан и циклопропан – этилен – оксид пропилена – оксид этилена – ацетилен – водород.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ТГиВ 20.05.01.070000.000 ПЗ
Влияние структуры молекулы горючего на скорость горения удалось проследить для низкомолекулярных углеводородов с прямой цепью. Скорость горения растет с увеличением степени непредельности в молекуле: алканы – алкены – алкадиены – алкины. С ростом длины цепи этот эффект уменьшается, но все же скорость горения воздушных смесей для н-гексена примерно на 25% выше, чем для н-гексана.

Линейная скорость горения кислородных смесей значительно выше, чем воздушных (для водорода и оксида углерода – в 2-3 раза, а для метана – больше чем на порядок). Массовая скорость горения изученных кислородных смесей (кроме смеси СО + O2) лежит в пределах 3,7-11,6 кг/(м2 с).

В табл. 1 приведены (по данным Η. А. Силина и Д. И. Постовского) скорости горения уплотненных смесей нитратов и перхлоратов с магнием. Для приготовления смесей использовали порошкообразные компоненты с размерами частиц нитратов 150-250 мкм, перхлоратов 200-250 мкм и магния 75-105 мкм. Смесью заполняли картонные оболочки диаметром 24-46 мм до коэффициента уплотнения 0,86. Образцы сгорали на воздухе при нормальных давлении и начальной температуре.

Из сопоставления данных табл. 1 и 1.25 следует, что конденсированные смеси превосходят газовые смеси по массовой и уступают им по линейной скорости горения . Скорость горения смесей с перхлоратами меньше скорости горения смесей с нитратами, а смеси с нитратами щелочных металлов горят с более высокой скоростью, чем смеси с нитратами щелочноземельных металлов.

Таблица 2

Пределы воспламенения и скорости горения смесей с воздухом (I ) и кислородом (II) при нормальном давлении и комнатной температуре

Лист
№ докум.
Подпись
Дата
Лист
ТГиВ 20.05.01.070000.000 ПЗ
1,06 0,39 0,35-0,52 3,7-5,1 0,38-0,45 4,15 Этан 0,0564 0,50 2,72 1,12 0,46 Пропан 0,0402 0,51 2,83 1,14 0,45 0,57 0,41 Бутан 0,0312 0,54 3,30 1,13 0,44 0,54 н-Пентан 0,0255 0,54 3,59 1,15 0,44 н-Гексан 0,0216 0,51 4,00 1,17 0,45 н-Гептан 0,0187 0,53 4,50 1,22 0,45 Циклопропан 0,0444 0,58* 2,76* 1,13 0,55 Циклогексан 0,0227 0,48 4,01 1,17 0,45 Этилен 0,0652 0,41 <6,1 1,15 0,79 0,88 0,72-0,89 7,61 6,45 Пропилен 0,0444 0,48 2,72 1,14 0,50 Бутен-1 0,0337 0,53 3,53 1,16 0,50 Ацетилен 0,0772 0,39* 1,33 1,63 1,86 1,65-1,73 11,6 Бутин-1 0,0366 1,20 0,67 Бензол 0,0271 0,43 3,36 1,08 0,47 0,61 4,6 0,6 4,6 Толуол 0,0277 0,43 3,22 1,05 0,40 Гетралин C10H12 0,0158 1,01 0,38 Оксид этилена 0,0772 1,25 1,05 1,13 1,12 Оксид пропилена 0,0497
Изм.

Методы расчета скорости выгорания жидкостей

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ТГиВ 20.05.01.070000.000 ПЗ
Если известны параметры состояния исследуемой жидкости, входящие в формулы (14) - (23), то в зависимости от имеющихся данных скорость выгорания (m ) в любом режиме горения можно вычислить, не проводя экспериментальных исследований, по формулам:

; (16)

где M - безразмерная скорость выгорания;

; (17)

M F - молекулярная масса жидкости, кг·моль -1 ;

d - характерный размер зеркала горящей жидкости, м. Определяется как корень квадратный из площади поверхности горения; если площадь горения имеет форму окружности, то характерный размер равен ее диаметру. При расчете скорости турбулентного горения можно принять d = 10 м;

Т к - температура кипения жидкости, К.

Порядок расчета следующий.

Определяют режим горения по величине критерия Галилея Ga , вычисляемого по формуле

где g - ускорение свободного падения, м·с -2 .

В зависимости от режима горения вычисляют безразмерную скорость выгорания М . Для ламинарного режима горения:

Для переходного режима горения:

е сли , то , (20)

если , то , (21)

Для турбулентного режима горения:

; , (22)

M 0 - молекулярная масса кислорода, кг·моль -1 ;

n 0 - стехиометрический коэффициент кислорода в реакции горения;

n F - стехиометрический коэффициент жидкости в реакции горения.

B - безразмерный параметр, характеризующий интенсивность массопереноса, вычисляемый по формуле

, (23)

где Q - низшая теплота сгорания жидкости, кДж·кг -1 ;

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ТГиВ 20.05.01.070000.000 ПЗ
- безразмерное значение массы кислорода, необходимого для сгорания 1 кг жидкости;

c - изобарная теплоемкость продуктов горения (принимается равной теплоемкости воздуха c = 1), кДж·кг -1 ·К -1 ;

T 0 - температура окружающей среды, принимаемая равной 293 К;

H - теплота парообразования жидкости при температуре кипения, кДж·кг -1 ;

c e - средняя изобарная теплоемкость жидкости в интервале от T 0 до T к.

Если известны кинематическая вязкость пара или молекулярная масса и температура кипения исследуемой жидкости, то скорость турбулентного горения вычисляют с использованием экспериментальных данных по формуле

где m i - экспериментальное значение скорости выгорания в переходном режиме горения, кг·м --2 ·с -1 ;

d i - диаметр горелки, в которой получено значение m i , м. Рекомендуется использовать горелку диаметром 30 мм. Если в горелке диаметром 30 мм наблюдается ламинарный режим горения, следует применять горелку большего диаметра.

Над поверхностью жидкого или твердого вещества при любой температуре существует паровоздушная смесь, давление которой в состоянии равновесия определяется давлением насыщенных паров или их концентрацией. С увеличением температуры давление насыщенных паров возрастет но экспоненциальной зависимости (уравнение Клапейрона - Клаузиса):

где Р н „ - давление насыщенного пара, Па; Q„ C11 - теплота испарения, кДж/моль; Т - температура жидкости, К.

Для любой жидкости существует интервал температур, в котором концентрация насыщенных паров над зеркалом (поверхность жидкости) будет находится в области воспламенения, т.е. НКПВ

Для создания НКПВ паров достаточно нагреть до температуры, равной НТПВ, не всю жидкость, а лишь только ее поверхностный слой.

При наличии источника зажигания такая смесь будет способна к воспламенению. Па практике чаще используют понятия «температура вспышки» и «температура воспламенения».

Температура вспышки - минимальная температура жидкости, при которой над ее поверхностью образуется концентрация паров, способная к воспламенению от источника зажигания, однако скорость образования паров недостаточна для поддержания горения.

Таким образом, как при температуре вспышки, так и при нижнем температурном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае НКПВ создается насыщенными парами. Поэтому температура вспышки всегда несколько выше, чем НТПВ. Хотя при температуре вспышки наблюдается кратковременное воспламенение паров, не способное перейти в устойчивое горение жидкости, тем не менее, при определенных условиях вспышка может стать причиной возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспышки в закрытом сосуде 61 °С и ниже, к горючим - с температурой вспышки более 61°С.

Экспериментально температуру вспышки определяют в приборах открытого и закрытого типа. В сосудах закрытого типа значения температуры вспышки всегда ниже, чем в открытом, поскольку в этом случае пары жидкости имеют возможность диффундировать в атмосферу и для создания горючей концентрации над поверхностью требуется более высокая температура.

В табл. 2.4 приведена температура вспышки некоторых жидкостей, определенных приборами открытого и закрытого типа.

Таблица 2.4

Температура вспышки разных видов жидкости при разных методах определения

Температура воспламенения - минимальная температура жидкости, при которой после воспламенения паров от источника зажигания устанавливается стационарное горение.

У легковоспламеняющихся жидкостей температура воспламенения выше, чем температура вспышки, на 1-5°, при этом, чем ниже температура вспышки, тем меньше разность между температурами воспламенения и вспышки.

У горючих жидкостей, имеющих высокую температуру вспышки, разница между этими температурами доходит до 25-35°. Между температурой вспышки в закрытом тигле и нижним температурным пределом воспламенения имеется корреляционная связь, описываемая формулой

Это соотношение справедливо при Г В(.

Существенная зависимость температур вспышки и воспламенения от условий эксперимента вызывает определенные трудности при создании расчетного метода оценки их величины. Одним из наиболее распространенных из них является полуэмпирический метод, предложенный В. И. Блиновым:

где Г вс - температура вспышки (воспламенения), К; Р нп - парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па; D () - коэффициент диффузии паров жидкости, с/м 2 ; b - количество молекул кислорода, необходимое для полного окисления одной молекулы горючего; В - константа метода определения.

При расчете температуры вспышки в замкнутом сосуде рекомендуется принимать В = 28, в открытом сосуде В = 45; для расчета температуры воспламенения принимают В = 53.

Температурные пределы воспламенения могут быть рассчитаны:

По известным значениям температуры кипения

где ^н(в)’ 7/ип - соответственно нижний (верхний) температурный предел воспламенения и температура кипения, °С; k, I - параметры, значения которых зависят от вида горючей жидкости;

По известным значениям концентрационных пределов. Для этого сначала определяется концентрация насыщенных паров над поверхностью жидкости

где (р„ п - концентрация насыщенных паров, %; Р н п - давление насыщенных паров, Па; Р 0 - внешнее (атмосферное) давление, Па.

Из формулы (2.41) следует

Опеределив по значению нижнего (верхнего) предела воспламенения давление насыщенного пара, находим температуру, при которой это давление достигается. Она и является нижним (верхним) температурным пределом воспламенения.

По формуле (2.41) можно решать и обратную задачу: рассчитывать концентрационные пределы воспламенения по известным значениям температурных пределов.

Свойство пламени к самопроизвольному распространению наблюдается не только при горении смесей горючих газов с окислителем, но и при горении жидкостей и твердых веществ. При локальном воздействии тепловым источником, например открытым пламенем, жидкость будет прогреваться, возрастет скорость испарения и при достижении поверхностью жидкости температуры воспламенения в месте воздействия теплового источника произойдет зажигание паровоздушной смеси, установится устойчивое пламя, которое затем с определенной скоростью будет распространяться по поверхности и холодной части жидкости.

Что же является движущей силой распространения процесса горения, каков его механизм?

Распространение пламени по поверхности жидкости протекает в результате теплопередачи за счет излучения, конвекции и молекулярной теплопроводности от зоны пламени к поверхности зеркала жидкости.

По современным представлениям основной движущей силой распространения процесса горения является теплоизлучение от пламени. Пламя, обладая высокой температурой (более 1000°С), способно, как известно, излучать тепловую энергию. Согласно закону Стефана - Больцмана интенсивность лучистого теплового потока, отдаваемого нагретым телом, определяется соотношением

где ц я - интенсивность лучистого теплового потока, кВт/м 2 ; 8 0 - степень черноты тела (пламени) (е 0 = 0,75-Н,0); а = = 5,7 10 11 кДж/(м 2 с К 4) - постоянная Стефана - Больцмана; Г г - температура тела (пламени), К; Г 0 - температура среды, К.

Тепло, излучаясь во все стороны, частично поступает и на еще не загоревшиеся участки поверхности жидкости, прогревая их. При повышении температуры поверхностного слоя над прогретым участком процесс испарения жидкости интенсифицируется и образуется паровоздушная смесь. Как только концентрация паров жидкости превысит НКВП, произойдет ее зажигание от пламени. Затем уже этот участок поверхности жидкости начинает интенсивно прогревать соседний участок поверхности жидкости и т.д. Скорость распространения пламени по жидкости зависит от скорости прогрева поверхности жидкости лучистым тепловым потоком от пламени, т.е. от скорости образования горючей паровоздушной смеси над поверхностью жидкости, которая, в свою очередь, зависит от природы жидкости и начальной температуры.

Каждый вид жидкости имееют свою теплоту испарения и температуру вспышки. Чем выше их значения, тем более длительное время необходимо для ее прогрева до образования горючей паровоздушной смеси, тем, следовательно, ниже скорость распространения пламени. С увеличением молекулярной массы вещества в пределах одного гомологического ряда снижается давление паров упругости, возрастают теплота испарения и температура вспышки, соответственно снижается скорость распространения пламени.

Увеличение температуры жидкости повышает скорость распространения пламени, так как время, необходимое для прогрева жидкости до температуры вспышки перед зоной горения, уменьшается.

При вспышке скорость распространения пламени по зеркалу жидкости будет (по физическому смыслу) равна скорости распространения пламени по паровоздушной смеси состава, близкого к НКПВ, т.е. 4-5 см/с. При увеличении начальной температуры жидкости выше температуры вспышки скорость распространения пламени будет зависеть (аналогично скорости распространения пламени) от состава горючей смеси. Действительно, при увеличении температуры жидкости выше температуры ее вспышки концентрация паровоздушной смеси над поверхностью зеркала будет расти от НКВП до 100% (температура кипения).

Следовательно, вначале при повышении температуры жидкости от температуры вспышки до температуры, при которой над поверхностью образуются насыщенные пары, с концентрацией, равной стехиометрической (точнее, несколько выше, чем стехиометрическая), скорость распространения пламени будет нарастать. В закрытых сосудах по мере дальнейшего повышения температуры жидкости скорость распространения пламени начинает снижаться, вплоть до скорости, соответствующей верхнему температурному пределу воспламенения, при котором распространение пламени но паровоздушной смеси станет уже невозможным из-за недостатка кислорода в паровоздушной смеси над поверхностью жидкости. Над поверхностью же открытого резервуара концентрация паров на разных уровнях будет различной: у поверхности она будет максимальной и соответствовать концентрации насыщенного пара при данной температуре, по мере увеличения расстояния от поверхности концентрация постепенно будет снижаться из-за конвективной и молекулярной диффузии.

При температуре жидкости, близкой к температуре вспышки, скорость распространения пламени по поверхности жидкости будет равна скорости его распространения по смеси паров в воздухе на НКПВ, т.е. 3-4 см/с. При этом фронт пламени будет расположен у поверхности жидкости. При дальнейшем увеличении начальной температуры жидкости скорость распространения пламени будет расти аналогично росту нормальной скорости распространения пламени по паровоздушной смеси с увеличением ее концентрации. С максимальной скоростью пламя будет распространяться по смеси с концентрацией, близкой к стехиометрической. Следовательно, с увеличением начальной температуры жидкости выше Г стх скорость распространения пламени будет оставаться постоянной, равной максимальному значению скорости распространения горения по стехиометрической смеси или несколько больше ее (рис. 2.5). Таким образом,

Рис. 25.

1 - горение жидкости в закрытой емкости; 2 - горение жидкости в открытой емкости при изменении начальной температуры жидкости в открытой емкости в широком диапазоне температур (вплоть до температуры кипения) скорость распространения пламени будет изменяться от нескольких миллиметров до 3-4 м/с.

С максимальной скоростью пламя будет распространяться по смеси с концентрацией, близкой к стехиометрической. С увеличением температуры жидкости выше Г стх увеличится расстояние над жидкостью, на котором сформируется стехиометрическая концентрация, а скорость распространения пламени останется прежней (см. рис. 2.5). Это обстоятельство всегда надо помнить, как при организации профилактической работы, так и при тушении пожаров, когда, например, может возникнуть опасность подсоса воздуха в закрытую емкость - ее разгерметизация.

После возгорания жидкости и распространения пламени но ее поверхности устанавливается диффузионный режим ее выгорания , который характеризуется удельной массовой W rM и линейной W V Jl скоростями.

Удельная массовая скорость - масса вещества, выгорающего с единицы площади зеркала жидкости в единицу времени (кг/(м 2 *с)).

Линейная скорость - расстояние, на которое перемещается уровень зеркала жидкости в единицу времени за счет ее выгорания (м/с).

Массовая и линейная скорости выгорания взаимосвязаны через плотность жидкости р:

После воспламенения жидкости температура ее поверхности повышается от температуры воспламенения до кипения, происходит формирование прогретого слоя. В этот период скорость выгорания жидкости постепенно повышается, растет высота факела пламени в зависимости от диаметра резервуара и вида горючей жидкости. После 1-10 мин горения наступает стабилизация процесса: скорость выгорания и размеры пламени остаются в дальнейшем неизменными.

Высота и форма пламени при диффузионном горении жидкости и газа подчиняются одним и тем же закономерностям, поскольку в обоих случаях процесс горения определяется взаимной диффузией горючего и окислителя. Однако если при диффузионном горении газов скорость струи газа не зависит от процессов, протекающих в пламени, то при горении жидкости устанавливается определенная скорость выгорания, которая зависит как от термодинамических параметров жидкости, так и от условий диффузии кислорода воздуха и паров жидкости.

Между зоной горения и поверхностью жидкости устанавливается определенный тепло- и массообмен (рис. 2.6). Часть теплового потока, поступающего к поверхности жидкости q 0y затрачивается на ее нагрев до температуры кипения q ucn . Кроме того, тепло q CT на нагрев жидкости поступает от факела пламени через стенки резервуара за счет теплопроводности. При достаточно большом его диаметре величиной q CT можно прене- бречь, тогда q {) = K „ n +

Очевидно, что

где с - теплоемкость жидкости, кДжДкг-К); р - плотность жидкости, кг/м 3 ; W nc - скорость роста прогретого слоя, м/с; W Jl - линейная скорость выгорания, м/с; 0и СП - теплота парообразования, кДж/кг; Г кип - температура кипения жидкости, К.


Рис. 2.6.

Г () - начальная температура; Г кип - температура кипения;

Т г - температура горения; q KUW q Jl - соответственно конвективный и лучистый тепловые потоки; q 0 - тепловой поток, поступающий на поверхность жидкости

Из формулы (2.45) следует, что интенсивность теплового потока из зоны пламени обусловливает определенную скорость поставки горючего в эту зону, химическое взаимодействие которого с окислителем, в свою очередь, влияет на величину # 0 . В этом и состоит взаимосвязь массо- и теплообмена зоны пламени и конденсированной фазы при горении жидкостей и твердых веществ.

Оценку доли тепла от общего тепловыделения при горении жидкости, которая затрачивается на ее подготовку к горению q 0 , можно провести в следующей последовательности.

Принимая для простоты W rjl = W nx , получим

Скорость тепловыделения с единицы поверхности зеркала жидкости (удельную теплоту пожара q ll7K) можно определить по формуле

где Q H - низшая теплота сгорания вещества, кДж/кг; Р п - коэффициент полноты сгорания.

Тогда, учитывая состояние (2.44) и разделив выражение (2.45) на формулу (2.46), получим

Расчеты показывают, что около 2% от общего тепловыделения при горении жидкости затрачивается на образование и доставку паров жидкости в зону горения. При установлении процесса выгорания температура поверхности жидкости увеличивается до температуры кипения, которая в дальнейшем остается неизменной. Данное утверждение относится к индивидуальной жидкости. Если же рассматривать смеси жидкостей, имеющих разную температуру кипения, то сначала происходит выход легкокипящих фракций, затем - все более высококипящих.

На скорость выгорания значительное влияние оказывает прогрев жидкости по глубине в результате передачи тепла от нагретой лучистым потоком q 0 поверхности жидкости в ее глубь. Этот теплоперенос осуществляется за счет теплопроводности и конвенции.

Прогрев жидкости за счет теплопроводности может быть представлен экспоненциальной зависимостью вида

где Т х - температура слоя жидкости на глубине х, К; Г кип - температура поверхности (температура кипения), К; k - коэффициент пропорциональности, м -1 .

Такой тип температурного поля называется распределением температуры первого рода (рис. 2.7).

Ламинарная конвенция возникает в результате различной температуры жидкости у стенок резервуара и в его центре, а также вследствие фракционной разгонки в верхнем слое при горении смеси.

Дополнительная передача тепла от нагретых стенок резервуара к жидкости приводит к прогреву ее слоев у стенок до более высокой температуры, чем в центре. Более нагретая у стенок жидкость (или даже пузырьки пара в случае ее прогрева у стенок выше температуры кипения) поднимается вверх, что способствует интенсивному промешиванию и быстрому прогреву жидкости на большой глубине. Образуется так называемый гомотермический слой, т.е. слой с практически постоянной температурой, толщина которого увеличивается во время горения. Такое температурное поле называют распределением температуры второго рода.

Рис. 2.7.

1 - распределение температуры первого рода; 2 - распределение температуры второго рода

Образование гомотермического слоя возможно также и в результате фракционной перегонки приповерхностных слоев смеси жидкостей, имеющих различную температуру кипения. По мере выгорания таких жидкостей приповерхностный слой обогащается более плотными высококипя- щими фракциями, которые опускаются вниз, способствуя гем самым конвективному прогреву жидкости.

Установлено, что чем ниже температура кипения жидкости (дизельное топливо, трансформаторное масло), гем труднее образуется гомотермический слой. При их горении температура стенок резервуара редко превышает температуру кипения. Однако при горении влажных высококипя- щих нефтепродуктов вероятность образования гомотермического слоя достаточна высокая. При прогреве стенок резервуара до 100°С и выше образуются пузырьки водяного пара, которые, устремляясь вверх, вызывают интенсивное перемещение всей жидкости и быстрый прогрев в глубине. Зависимость толщины гомотермического слоя от времени горения описывается соотношением

где х - толщина гомотермического слоя на некоторый момент времени горения, м; х пр - предельная толщина гомотермического слоя, м; т - время, отсчитываемое от момента начала формирования слоя, с; р - коэффициент, с -1 .

Возможность образования достаточно толстого гомотермического слоя при горении влажных нефтепродуктов чревата возникновением вскипания и выброса жидкости.

Скорость выгорания существенно зависит от вида жидкости, начальной температуры, влажности и концентрации кислорода в атмосфере.

Из уравнения (2.45) с учетом выражения (2.44) можно определить массовую скорость выгорания:

Из формулы (2.50) очевидно, что на скорость выгорания оказывают влияние интенсивность теплового потока, поступающего от пламени к зеркалу жидкости, и теплофизические параметры горючего: температура кипения, теплоемкость и теплота испарения.

Из табл. 2.5 очевидно, что существует определенное соответствие между скоростью выгорания и затратами тепла на прогрев и испарения жидкости. Так, в ряду бен- золксилолглицеринов с увеличением затрат тепла на прогрев и испарение скорость выгорания снижается. Однако при переходе от бензола к диэтиловому эфиру затраты тепла уменьшаются. Это кажущееся несоответствие обусловлено различием в интенсивности тепловых потоков, поступающих от факела к поверхности жидкости. Лучистый поток достаточно велик для коптящего пламени бензола и мал для относительно прозрачного пламени диэтилового эфира. Как правило, соотношение скоростей выгорания наиболее быстро горящих жидкостей и наиболее медленно горящих достаточно невелико и составляет 3,0-4,5.

Таблица 25

Зависимость скорости выгорания от затрат тепла на прогрев и испарение

Из выражения (2.50) следует, что с увеличением Г 0 скорость выгорания возрастает, поскольку снижаются затраты тепла на прогрев жидкости до температуры кипения.

Содержание влаги в смеси понижает скорость выгорания жидкости, во-первых, вследствие дополнительных затрат тепла на ее испарение, а во-вторых, в результате флегмати- зирующего влияния паров воды в газовой зоне. Последнее приводит к снижению температуры пламени, а следовательно, согласно формуле (2.43), уменьшается и его излучающая способность. Строго говоря, скорость выгорания влажной жидкости (жидкости, содержащей воду) не постоянна, она увеличивается или уменьшается в процессе горения в зависимости от температуры кипения жидкости.

Влажное горючее может быть представлено как смесь двух жидкостей: горючее + вода, в процессе горения которых происходит их фракционная разгонка. Если температура кипения горючей жидкости меньше температуры кипения воды (100°С), то происходит преимущественное выгорание горючего, смесь обогащается водой, скорость выгорания снижается и, наконец, горение прекращается. Если температура кипения жидкости больше 100°С, то, наоборот, сначала преимущественно испаряется влага и концентрация ее снижается. В результате скорость выгорания жидкости возрастает, вплоть до скорости горения чистого продукта.

Как правило, с повышением скорости ветра скорость выгорания жидкости увеличивается. Ветер интенсифицирует процесс смешивания горючего с окислителем, тем самым повышая температуру пламени (табл. 2.6) и приближая пламя к поверхности горения.

Таблица 2.6

Влияние скорости ветра на температуру пламени

Все это повышает интенсивность теплового потока, поступающего на нагрев и испарение жидкости, следовательно, приводит к увеличению скорости выгорания. При большей скорости ветра пламя может сорваться, что приведет к прекращению горения. Так, например, при горении тракторного керосина в резервуаре диаметром 3 м наступал срыв пламени при скорости ветра 22 м/с.

Большинство жидкостей не могут гореть в атмосфере с содержанием кислорода менее 15%. С увеличением концентрации кислорода выше этого предела скорость выгорания растет. В атмосфере, значительно обогащенной кислородом, горение жидкости протекает с выделением большого количества сажи в пламени и наблюдается интенсивное кипение жидкой фазы. Для многокомпонентных жидкостей (бензин, керосин и т.н.) температура поверхности с увеличением содержания кислорода в окружающей среде растет.

Повышение скорости выгорания и температуры поверхности жидкости с ростом концентрации кислорода в атмосфере обусловлено увеличением излучающей способности пламени в результате роста температуры горения и высокого содержания сажи в нем.

Скорость выгорания также значительно меняется с понижением уровня горючей жидкости в резервуаре: происходит снижение скорости выгорания, вплоть до прекращения горения. Поскольку подвод кислорода воздуха из окружающей среды внутрь резервуара затруднен, то при понижении уровня жидкости увеличивается расстояние h np между зоной пламени и поверхностью горения (рис. 2.8). Лучистый поток к зеркалу жидкости уменьшается, а следовательно, уменьшается и скорость выгорания, вплоть до затухания. При горении жидкостей в резервуарах большого диаметра предельная глубина /г пр, при которой происходит затухание горения, очень большая. Так, для резервуара с диаметром 5 м она составляет 11 м, а с диметром Им - около 35 м.