Получение цветных стекол. Окрашивание стёкол, цветное стекло для витражей. Вспомогательные сырьевые материалы


Автомобильные стекла несомненно, одна из наиболее важных частей автомобиля. Именно им мы обязаны комфортным условиям и удобству контроля над обстановкой, окружающей автомобиль. По своим характеристикам автомобильные стекла делятся на два принципиальных типа: триплекс и сталинит. Изготовленные по различным технологиям, они существенно отличаются своими свойствами.

Сталинит , оно же – закаленное или однослойное стекло . Его получают, используя специальную технологию термической обработки, закалку, которая заключается в постепенном нагреве с последующим охлаждением. Это автостекло обладает особой прочностью. При повышенном давлении сталинит разбивается на небольшие кусочки с неострыми краями, вполне безопасные для человека. Этот вид обычно используют в качестве боковых и задних.

Триплекс , оно же – ламинированное или многослойное стекло . Триплекс, произведенный в заводских условиях,– это, по сути, два стекла высшего качества, одинаковые по толщине, и специальная полимерная пленка, запекаемая между ними. Это автостекло довольно устойчиво к сильным ударам. Если же оно все-таки разбивается, связующая пленка удерживает осколки, и триплекс, в отличие от сталинита, не рассыпается. Ламинированные стекла – обычно лобовые. Качество и цвет многослойного стекла определяет тонировка в своей массе.

Автостекла бывают прозрачными или могут иметь какой-то оттенок. Это касается заводской тонировки, когда стекло уже изначально в своей массе бывает окрашено в какой-то цвет. Причем тонировка стекла может практически быть незаметна. Но достаточно поместить под него белый лист бумаги, как все изменится.

Европейские автомобили в большинстве (до 90%) имеют зеленую тонировку. Азиатские производители больше предпочитают голубой оттенок. На автомобилях премиум класса бывают атермальные стекла – это стекла , имеющие специальную защиту от нагревания и не допускающие «выжигания» цвета обивок, внутренних пластиков и прочего. В производстве подобных стекол в качестве специального покрытия используют оксид серебра, препятствующий нагреву. Оно дает массу преимуществ: повышенный комфорт летом, сокращение расхода топлива (снижается нагрузка на кондиционер), защита салона от выгорания и перегрева. Такое стекло довольно просто опознать снаружи по особому металлическому отливу.

Что же касается дешевого стекла , то оно – всегда прозрачное без какого-либо оттенка, имеет полоску.

Согласно «Общим техническим условиям» светопропускание

Лобовых стекол автомобилей составляет, как минимум, 75%;
- передних боковых и передних дверей – самое меньшее 70%;
- прочих стекол – минимум 60%.

Как определить какого цвета стекло автомобиля, если понадобиться?

Попробуем подвести некоторые итоги.
Лобовые автомобильные стекла бывают:
- бесцветные;
- тонированные, причем заводская тонировка – пятипроцентная с зеленоватым, голубоватым или бронзовым оттенком;
- снабженные солнцезащитным фильтром (полоса сверху), цвет – голубой, зеленый, серый или бронзовый;
- атермальные.

Боковые автомобильные стекла бывают:
- бесцветные;
- с пятипроцентной заводской тонировкой различных оттенков;
- атермальные.

Чтобы определить точный цвет автостекла и отличить настоящий заводской продукт, нужно прибегнуть к помощи обычного листа белой бумаги. Ее кладут под автостекло . Если бумага приобретет голубоватый или зеленоватый оттенок, это и будет свидетельствовать, что стекло автомобиля оригинальное и искать при его

Юрий Кукушкин

Стекло

История стекла уходит в глубокую древность. Известно, что в Египте и Месопотамии его умели делать уже 6000 лет назад. Вероятно, стекло начали изготавливать все же позже, чем первые керамические изделия, так как для его производства требовались более высокие температуры, чем для обжига глины. Если для простейших керамических изделий было достаточно только глины, то в состав стекла необходимо минимум три компонента.

Изделия из стекла так же, как и из керамики, практически не подвергаются атмосферным воздействиям и хорошо сохраняются даже под слоем земли. Эти изделия оказались важнейшими документами далекого прошлого. Они донесли до нас бесценную информацию об уровне культуры и техники древних народов. Благодаря стеклу до нашего времени дошли величайшие художественные произведения различных эпох культуры человечества.

Первый стекольный завод в России был построен в 1636 г. близ г. Воскресенска под Москвой. На нем выдували оконное стекло и стеклянную посуду. Через 30 лет в селе Измайлово, также под Москвой, был построен завод, на котором изготовляли высококачественные стаканы, графины, фляги, рюмки, кувшины и др. Особенно быстро стеклоделие развилось при Петре I. В XVIII в. около Москвы действовало шесть стекольных заводов.

Главный потребитель стекла в настоящее время – строительная индустрия. Больше половины всего вырабатываемого стекла приходится на оконное для остекления зданий и транспортных средств: автомашин, железнодорожных вагонов, трамваев, троллейбусов. Кроме того, стекло используют в качестве стенового и отделочного материала в виде пустотелых кирпичей, блоков из пеностекла, а также облицовочных плиток. Примерно треть производимого стекла идет на изготовление сосудов различного типа и назначения. Это прежде всего стеклянная тара – бутылки и банки. В большом количестве стекло расходуется на изготовление столовой посуды. Стекло пока незаменимо для производства химической посуды. В довольно большом количестве из стекла изготавливают вату, волокно и ткани для тепловой и электрической изоляции.

Относительная дешевизна стеклянных строительных материалов обусловливается широким распространением, а следовательно, доступностью и дешевизной сырья. Расплавленное стекло является удобным материалом для формования в изделия механизированным способом. Стекло хорошо поддается механической обработке. Это также снижает стоимость стеклянных изделий. Стекло пилят так же, как дерево, но для этого в кромку дисковой пилы зачеканивают алмазный или иной твердый порошок. Его можно сверлить обыкновенными стальными сверлами, применяя специальную смачивающую жидкость. Стекло колют на куски при помощи простого инструмента, напоминающего колун для дров, но действующим не ударом, а постепенно нарастающим усилием. Стекло можно обрабатывать на токарном станке резцами из особо твердой стали, вытачивая фигурные колонки так же, как из дерева или металла. Стекло шлифуют и полируют, применяя обычные абразивные порошки, инструменты и методы, давно известные и широко используемые в металлообрабатывающем производстве. Стекло можно сварить из одного кварцевого песка, химическая формула которого SiO 2 . Однако для этого нужна очень высокая температура (выше 1700°C). Получение таких температур в печах промышленного типа связано с большими трудностями. Обычные печи, в которых используются твердое, жидкое или газообразное топливо, для этого не годятся. Для плавления кварцевого песка применяют электрические печи специального устройства или горелки, в которых сжигается водород в токе кислорода. Расплавленный кварцевый песок представляет собой столь густую и вязкую массу, что из нее трудно удалить воздушные пузырьки и придать изделиям нужную форму.

В стекловарении используют только самые чистые разновидности кварцевого песка, в которых общее количество загрязнений не превышает 2...3%. Особенно нежелательно присутствие железа, которое даже в ничтожных количествах (десятые доли%) окрашивает стекло в зеленоватый цвет. Если к песку добавить соду Na 2 CO 3 , то удается сварить стекло при более низкой температуре (на 200...300°). Такой расплав будет иметь менее вязкий (пузырьки легче удаляются при варке, а изделия легче формуются). Но! Такое стекло растворимо в воде, а изделия из него подвергаются разрушению под влиянием атмосферных воздействий. Для придания стеклу нерастворимости в воде в него вводят третий компонент – известь, известняк, мел. Все они характеризуются одной и той же химической формулой – CaCO 3 .

Стекло, исходными компонентами шихты которого является кварцевый песок, сода и известь, называют натрий-кальциевым. Оно составляет около 90% получаемого в мире стекла. При варке карбонат натрия и карбонат кальция разлагаются в соответствии с уравнениями:

Na 2 CO 3 → Na 2 O + CO 2

CaCO 3 → CaО + CO 2

В результате в состав стекла входят оксиды SiO 2 , Na 2 O и CaО. Они образуют сложные соединения – силикаты, которые являются натриевыми и кальциевыми солями кремниевой кислоты.

В стекло вместо Na 2 O с успехом можно вводить K 2 О, а CaО может быть заменен MgO, PbO, ZnO, BaO. Часть кремнезема можно заменить на оксид бора или оксид фосфора (введением соединений борной или фосфорной кислот). В каждом стекле содержится немного глинозема Al 2 O 3 , попадающего из стенок стекловаренного сосуда. Иногда его добавляют специально. Каждый из перечисленных оксидов обеспечивает стеклу специфические свойства. Поэтому, варьируя этими оксидами и их количеством, получают стекла с заданными свойствами. Например, оксид борной кислоты B 2 O 3 приводит к понижению коэффициента теплового расширения стекла, а значит, делает его более устойчивым к резким температурным изменениям. Свинец сильно увеличивает показатель преломления стекла. Оксиды щелочных металлов увеличивают растворимость стекла в воде, поэтому для химической посуды используют стекло с малым их содержанием. В табл. 1 приведен состав (в%) некоторых типичных промышленных стекол.

Таблица 1

Сода – сырье относительно дорогое и имеющее огромный спрос со стороны различных отраслей народного хозяйства. Поэтому в качестве источника Na 2 O при варке стекла используют также природный минерал Na 2 SO 4 . В СССР его огромные залежи имеются на месте бывшего залива Кара-Богаз-Гол (рядом с Каспийским морем). Однако в этом случае варка стекла требует более высоких температур. Кроме того, в шихту необходимо вводить уголь для восстановления серы в соответствии с уравнением

2Na 2 SO 4 + С → 2Na 2 O + 2SO 2 + CO 2

При варке стекла первым плавится оксид щелочного металла, после чего в этом расплаве начинают растворяться зерна кварца и известняка, вступая в химическое взаимодействие. Поэтому чем больше в стекле оксидов щелочных металлов, тем при меньших температурах оно плавится. В Древнем Египте, когда техника получения высоких температур была несовершенна, в стеклоделии преобладали рецепты с повышенным содержанием оксидов щелочных металлов (до 30%) и малым содержанием извести (около 3...5%). В эллинистическую эпоху, с усовершенствованием техники получения высоких температур, содержание оксидов щелочных металлов снижается до 16...17%, а извести повышается до 10%. Естественно, что такие стекла стали более стойкими к воде. В настоящее время варка стекла проводится при температуре 1400...1500°C в течение нескольких часов. Процесс варки стеклоделы делят на три стадии: провар шихты, осветление (удаление «мошки» и «свилей»), студка – осторожное охлаждение.

Мошкой стеклоделы называют мелкие пузырьки газа, распределенные по всей массе стекла. Ее удаление из жидкой массы производят «бурлением» при помощи деревянной чурки или обыкновенного сырого картофеля. Помещенные в жидкое стекло, они дают обильное выделение газов, которые и очищают от мошки всю массу. Ее наличие в изделиях считается браком. Мошка особенно недопустима в оптических стеклах.

Стекольным свилем называют нитеобразные потоки, подобные тем, которые можно наблюдать в процессе растворения сахара в воде при медленном перемешивании. Свиль – это видимая граница двух соседних участков стекольной массы. Наличие свилей свидетельствует о плохой перемешанности стекольной массы при варке, т.е. о его низком качестве.

Охлаждение стекла, а точнее изделия из него проводят медленно, чтобы избежать в нем напряжений. При быстром охлаждении стекла поверхностные слои тела затвердевают и могут иметь температуру, близкую к комнатной, а внутренние части, вследствие низкой теплопроводности, могут иметь температуру до 1000°C. Поскольку внутренние части при охлаждении сжимаются, а наружные уже не уменьшаются в размере, в них возникают высокие поверхностные сжимающие напряжения. Внутренние слои, наоборот, испытывают высокие растягивающие напряжения. Такое стеклянное тело называют «закаленным». Закаленное стекло обладает высокой механической прочностью. Однако у него есть и недостатки. При нарушении поверхностного слоя (например, нанесение царапины), т.е. при нарушении сжимающих и растягивающих сил, закаленное стекло разлетается вдребезги.

При медленном охлаждении стеклянного тела растягивающие и сжимающие напряжения не возникают. Такое стекло называют «отожженным». Мелкие изделия, например столовая посуда, отжигаются (охлаждаются) в течение нескольких часов. Крупные и прецизионные изделия, например линзы астрономических объективов диаметра 1 м и более, отжигаются в течение нескольких месяцев.

Окраску стекла осуществляют введением в него оксидов некоторых металлов или образованием коллоидных частиц определенных элементов. Так, золото и медь при коллоидном распределении окрашивают стекло в красный цвет. Такие стекла называют золотым и медным рубином соответственно. Серебро в коллоидном состоянии окрашивает стекло в желтый цвет. Хорошим красителем является селен. В коллоидном состоянии он окрашивает стекло в розовый цвет, а в виде соединения CdS·3CdSe – в красный. Такое стекло называют селеновым рубином. При окраске оксидами металлов цвет стекла зависит от его состава и от количества оксида-красителя. Например, оксид кобальта (II) в малых количествах дает голубое стекло, а в больших – фиолетово-синее с красноватым оттенком. Оксид меди (II) в натрий-кальциевом стекле дает голубой цвет, а в калиево-цинковом – зеленый. Оксид марганца (П) в натрий-кальциевом стекле дает красно-фиолетовую окраску, а в калиево-цинковом – сине-фиолетовую. Оксид свинца (II) усиливает цвет стекла и придает цвету яркие оттенки.

Бутылочное стекло низкого сорта, как правило, имеет окраску, которая зависит от присутствия в нем ионов Fe 2+ и Fe 3+ . Стекольное сырье трудно очищается от железа и поэтому в дешевых сортах оно всегда присутствует. Ионы Fe 2+ хорошо поглощают лучи света с длиной волны примерно 600 ммк (желтые и красные) и, следовательно, окрашивают стекло в дополнительный голубой цвет. Ионы Fe 3+ поглощают лучи с длиной волны 500 ммк (синие и фиолетовые), окрашивая стекло в желтоватый цвет. Важно отметить, что ионы Fe 2+ в области видимого света имеют удельное поглощение, примерно в 10 раз большее, чем ионы Fe 3+ . Поскольку в стекле одновременно содержатся как ионы Fe 2+ , так и ионы Fe 3+ , они и придают стеклу зеленоватую окраску (бутылочный цвет).

Существуют химические и физические способы обесцвечивания стекла. В химическом способе стремятся все содержащееся железо перевести в Fe 3+ . Для этого в шихту вводят окислители – нитраты щелочных металлов, диоксид церия СеO 2 , а также оксид мышьяка (III) As 2 O 3 и оксид сурьмы (III) Sb 2 O 3 . Химически обесцвеченное стекло лишь слегка окрашено (за счет ионов Fe 3+) в желтовато-зеленоватый цвет, но обладает хорошим светопропусканием. При физическом обесцвечивании в состав стекла вводят «красители», т.е. ионы, которые окрашивают его в дополнительные тона к окраске, создаваемой ионами железа, – это оксиды никеля, кобальта, редкоземельных элементов, а также селен. Диоксид марганца MnO 2 обладает свойствами как химического, так и физического обесцвечивания. В результате двойного поглощения света стекло становится бесцветным, но его светопропускание понижается. Таким образом, следует различать светопрозрачные и обесцвеченные стекла, поскольку эти понятия различны.

Следует также отметить, что окрашенное стекло иногда предохраняет содержимое бутылок от нежелательного фотохимического воздействия. Поэтому окраску бутылочного стекла иногда специально усиливают.

Одним из важнейших свойств стекла является прозрачность. Однако в ряде случаев стеклу специально придают непрозрачность путем его «глушения». Это процесс, в результате которого стекло становится непрозрачным. Вещества, способствующие помутнению стекла, называют глушителями. Глушение происходит вследствие распределения по всей массе стекла мельчайших кристаллических частиц. Они представляют нерастворившиеся частицы глушителя или частицы, выделившиеся из жидкой массы при охлаждении стекла. Эти частицы обычно прозрачны, но их показатель преломления отличается от показателя преломления стекла. Поэтому падающий на них луч отклоняется от прямолинейного направления и стекло перестает быть прозрачным. В далеком прошлом в качестве глушителей стекла использовали костяную муку, содержащую фосфат кальция Ca 3 (PO 4) 2 , а также оксиды олова SnO, мышьяка As 2 O 3 и сурьмы Sb 2 O 3 . В настоящее время для этой цели применяют криолит Na 3 , плавиковый шпат CaF 2 и другие фторидные соединения.

Сильно заглушенное стекло (белого цвета) называют молочным. Для его изготовления чаще всего используют криолит. Молочное стекло используют главным образом для изготовления осветительной арматуры.

Несмотря на то что возраст стеклоделия оценивается в 6 тыс. лет, прозрачное и бесцветное стекло люди научились варить лишь на пороге новой эры. До этого производилось непрозрачное окрашенное в различные тона стекло и из него изготавливались главным образом мелкие изделия: бусы, браслеты, пуговицы, кольца, печатки, шахматные фигуры и др. Стеклодувы античной эпохи начали широко применять холодную обработку стекла: рельефную резьбу, гравировку, шлифовку. Как только было получено прозрачное стекло, стеклоделы стали стремиться изготовить из него оконные пластины. Ученые предполагают, что оконное стекло вначале было цветным. Это объясняется тем, что бесцветное стекло получить было весьма непросто, так как сырье обычно содержит различные примеси, которые придают стеклу окраску. Особенно часто в сырье присутствуют соединения железа. Получение пластин для остекления окон оказалось весьма непростым делом. Изготовление полых изделий довольно сложной формы путем выдувания для человека было более простой задачей, чем получение листового стекла. Эта задача была решена лишь к концу средневековья. При раскопках Помпеи, погребенной под пеплом вулкана Везувия в 79 г. н.э., было установлено, что в очень редких случаях в окна были вставлены пластины стекла, которые были довольно толстыми. По-видимому, тонкое листовое стекло итальянские стеклоделы еще не научились делать.

Считают, что метод выдувания, так же как и способ варки прозрачного стекла, был открыт в период смены летоисчисления. Поводов для его открытия было предостаточно. Для получения высоких температур в металлургии был уже известен способ дутья. При варке стекла, требующей также высоких температур, дутье, в частности, проводилось при помощи легких человека. Для этого использовались длинные и полые тростниковые трубки, конец которых обмазывался глиной. Последнее было необходимо для того, чтобы трубка не загоралась. Таким образом, для открытия метода выдувания стеклянных изделий были созданы все предпосылки. Нужен был только случай, когда конец трубки прикоснется к жидкой стекольной массе. Если это произошло, то, продолжая дуть в трубку, человек должен получить что-то похожее на пузырь. Следующим шагом было помещение выдуваемого «пузыря» в деревянную форму, и полое стеклянное изделие почти готово. Как здесь не вспомнить хорошо известное изречение, что «все гениальное просто».

Вероятно, метод выдувания изделий из стекла был изобретен в различных местах, где культивировалось стеклоделие, примерно в одно и то же время. Однако принято считать, что способ выдувания был изобретен в Александрии в I в. до н.э. На первый взгляд, удивительно, что люди научились делать стеклянные изделия сложной полой конфигурации, но не умели делать листовое стекло. Однако для этого были свои весьма основательные технические затруднения.

Оконное стекло

Впервые оконное стекло, хотя и весьма несовершенное, появилось на рубеже старой и новой эры летоисчисления у римлян. Однако после падения Римской империи секреты его производства были утеряны и в начальный период средневековья в Европе оконного стекла не знали. Естественно возникает вопрос, а что же было в окнах? Часто окна закрывались сплошными деревянными ставнями. В теплые дни они открывались, впуская дневной свет внутрь помещения. В иное время окна закрывались и помещение освещали свечами. В России свечи, которые были дороги, часто заменялись горящей лучиной.

В некоторых дворцах, парадных зданиях и культовых сооружениях в Европе в мелкие ячейки в оконных проемах вставляли пластинки слюды, которые ценились очень дорого. В домах простых людей для этой цели использовались бычий пузырь и промасленная бумага или ткань. В середине XVI в. даже во дворцах французских королей окна закрывались промасленным полотном или бумагой. Лишь в середине XVII в. при Людовике XIV в окнах его дворца появилось стекло в виде маленьких квадратиков, вставленных в свинцовый переплет. Листовое стекло большой площади долго не умели получать. Поэтому даже в XVIII в. застекленные окна имели мелкий переплет. Обратите внимание на реставрированные здания петровской эпохи, например на Меньшиковский дворец в Санкт-Петербурге. Однако вернемся к истокам производства оконного стекла.

Как уже было сказано, римляне научились изготовлять оконное стекло в конце старой эры. Они делали это путем отливки и раскатывания жидкого стекла в форму в виде противня, который изготавливался из глины. Отливки извлекались из формы еще в горячем виде, пока стекло сохраняло пластичность. Таким способом получали оконное стекло толщиной около 10 мм и площадью до 0,5 м 2 . Поскольку прилегающая к форме сторона листа оказывалась шероховатой, то стекло не было прозрачным.

Такое стекло находили при раскопках в западноевропейских колониях Рима, а также на Востоке вплоть до Черноморского побережья. Как уже было отмечено, после распада Римской империи это ремесло пришло в упадок и способ производства был забыт и никогда не возобновлялся. Новый способ производства оконного стекла был разработан несколько столетий спустя, т.е. в средние века. Этот способ принципиально отличался от древнеримского, так как получался не отливкой, а выдуванием. Вначале выдували шар, который раскатыванием на плитке и размахиванием в воздухе превращался в подобие большой ампулы. После отрезания верхней и нижней части получался цилиндр. Последний разрезался вдоль твердым минералом и на раскаленной глиняной плите разглаживался в лист деревянной гладилкой. Стекло получалось довольно тонким, хотя и небольшого размера. Сторона, прилегавшая к плите при разглаживании, также получалась шероховатой, а значит, стекло опять же было непрозрачным.

На территории древнеславянского государства археологи многократно находили фрагменты стеклянных кругов диаметром 200...250 мм с хорошо заделанными кромками. Ученые сходятся во мнении, что эти стеклянные круги служили для остекления окон крупных общественных зданий, например храма Киевской Софии и других церквей домонгольской Руси. Считают, что способ их производства сводился к следующему. В форме выдувался сосуд, похожий на конусообразный графин. Дно этого «графина» обрезалось и кромка завертывалась.

В конце средневекового периода в Европе начали широко применять «лунный» способ изготовления листового стекла. В его основу также был положен метод выдувания. При этом способе вначале выдувался шар, затем он сплющивался, к его дну припаивалась ось, а около выдувательной трубки заготовка обрезалась. В результате получалось подобие вазы с припаянной ножкой-осью. Раскаленная «ваза» вращалась с большой скоростью вокруг оси и под действием центробежной силы превращалась в плоский диск. Толщина такого диска была 2...3 мм, а диаметр доходил до 1,5 м. Далее диск отделялся от оси и отжигался. Такое стекло было гладким и прозрачным. Характерная его особенность – наличие в центре диска утолщения, которое специалисты называют «пупком». Лунный способ производства сделал листовое стекло доступным для населения. Однако на смену ему уже в начале XVIII в. пришел другой более совершенный «халявный» способ, который использовался во всем мире почти в течение двух столетий. По существу, это было усовершенствование средневекового способа выдувания, в результате которого получался цилиндр. «Халявой» называли формируемую массу стекла на конце выдувной трубки. Она доходила до 15...20 кг и из нее в итоге получались листы стекла площадью до 2...2,5 м 2 .

Этот способ позволил получать оконное стекло хорошего качества и относительно недорогое для широких слоев населения. Таким образом, проблема светлого и теплого жилища была разрешена лишь в XVIII в. Это было достигнуто трудом многих поколений стеклоделов в течение двух тысячелетий.

Однако «халявный» способ трудно поддавался механизации, а потребности в оконном стекле росли быстрыми темпами. Поэтому поиски новых способов продолжались и в результате в начале XX в. был внедрен в промышленность механизированный процесс. В основе его лежало наблюдение американца Кларка, сделанное в первой половине XIX в. Оно состояло в том, что если на поверхность жидкого стекла положить железный стержень («приманку»), а затем поднимать его, то стеклянная масса приварится (приклеится) к стержню и потянется за ним в виде полотна. При остывании на воздухе получается стеклянный лист. Однако он получался не с параллельными кромками, а в виде клиновидного полотнища. Следующим шагом на пути разработки механизированного способа было изобретение бельгийца Фурко. Он предложил положить на поверхность расплавленной массы керамический брус («лодочку») с продольной щелью. Керамика легче расплавленной стеклянной массы и потому лодочка плавает на поверхности. Если нажать на лодочку, то расплавленная масса выдавливается из щели. На нее опускают «приманку» и тянут вверх. Если скорость подъема приманки будет равна скорости выдавливания стекломассы, то получится правильное полотнище с параллельными кромками. Дальнейшее завершение решения проблемы носит чисто технический и конструкторский характер – устанавливаются подъемные валики, холодильник и другие приспособления. Толщина листа зависит от скорости подъема и скорости охлаждения листа.

В настоящее время оконное стекло производят по данному способу. Имеется и несколько другой вариант технологического оформления процесса производства листового стекла, который используют в США. В нем вместо лодочки с каждого борта полотна располагается пара роликов, между которыми и проходит полотно. Ролики препятствуют сужению полотна и потому отпадает необходимость в лодочке.

В современном строительстве для остекления общественных зданий, гостиниц и витрин магазинов, а также для авто- и вагоностроения, широко используют стекло толщиной 6...8 мм и даже до нескольких сантиметров. Такое стекло называют зеркальным. Оно изготавливается методом проката с последующей шлифовкой и полировкой. Когда говорят о здании, построенном из стекла и бетона, то имеют в виду именно такое зеркальное стекло.

Из сказанного видно, какими усилиями далось человеку прозрачное стекло. Однако в некоторых деталях промышленного и бытового интерьера необходимо, чтобы стекло, наоборот, было непрозрачным, но пропускало свет. Стекло для таких целей подвергают пескоструйной обработке или грубой шлифовке. В настоящее время с этой же целью изготавливают узорчатое листовое стекло, т.е. имеющее какой-либо рисунок. Его получают прокатом на столах или между вальцами, на которые нанесен рисунок.

Мелкие стеклянные изделия делают матовыми обработкой фтороводородной (плавиковой) кислотой. Последняя взаимодействует с диоксидом кремния, находящимся на поверхности, с образованием летучего тетрафторида кремния SiF 4 в соответствии с уравнением

SiO 2 + 4HF = SiF 4 + 2H 2 О

Вряд ли современный человек может оценить тот комфорт и удобство, которое дает ему прозрачное листовое стекло. Человек рождается в светлом и теплом помещении и принимает это как должное.

Фотохромные стекла

Фотохромные стекла изменяют окраску под действием излучения. В настоящее время получили распространение очки со стеклами, которые при освещении темнеют, а в отсутствие интенсивного освещения вновь становятся бесцветными. Такие стекла применяют для защиты от солнца сильно остекленных зданий и для поддержания постоянной освещенности помещений, а также на транспорте. Фотохромные стекла содержат оксид бора B 2 O 3 , а светочувствительным компонентом является хлорид серебра AgCl в присутствии оксида меди (I) Cu 2 O. При освещении происходит процесс

AgCl – [h ν (свет)] → Ag 0 + Cl 0

Выделение атомарного серебра приводит к потемнению стекла. В темноте реакция протекает в обратном направлении. Оксид меди (I) играет роль своеобразного катализатора.

При интенсивном облучении стекла (в том числе и лабораторного) γ-лучами нейтронами и в меньшей мере α-, и β-лучами также происходит окрашивание стекла (чаще в темные и черные цвета). Это связано с изменением структуры стекла и образования ионов, которые играют роль «цветовых центров». При нагревании стекла до температур, близких к температуре размягчения, окраска исчезает. Иногда подобные стекла используют в качестве дозиметров больших доз излучений.

Витраж

Витраж – это декоративная орнаментальная или тематическая композиция, изготовленная из кусков разноцветного стекла, заполняющая оконный проем. Витраж широко использовался для архитектурного оформления готических храмов. Позже в виде витражей начали выполняться гербы городов в городских ратушах и других зданиях общественного назначения. В подражание этому дворянские дома в виде витражей стали оформлять семейные гербы.

Искусство витража получило развитие в эпоху средневековья и достигло наибольшего расцвета в эпоху Возрождения. Слово витраж происходит от франц. vitre – оконное стекло. Кроме разноцветного стекла использовались стекла, расписанные красками. В качестве последних широко применяли тонкорастертые смеси оксидов металлов (меди, железа и др.) с легкоплавким стеклом. Смеси замешивались на воде, вине или растительном масле и в виде кашицы наносились на стекло. После высыхания расписанное стекло подвергалось обжигу при умеренной температуре. По описанию монаха Теофила в XII в. витражи изготавливались следующим образом. Заранее нарезанные и хорошо подогнанные друг к другу куски цветного стекла обертывались по краям полосками свинца. Обернутые куски раскладывались на столе и плотно подгонялись один к другому, а затем свинцовые перемычки спаивались припоем из сплава олова и свинца. Спаивание проводилось с обеих сторон.

В настоящее время искусство витража начинает возрождаться. Особенно ярко проявляется это в Прибалтике.

Хрусталь, хрустальное стекло

Хрусталь, хрустальное стекло – это силикатное стекло, содержащее различное количество оксида свинца. Часто на маркировке изделия указывается содержание свинца. Чем больше его количество, тем выше качество хрусталя. Хрусталь характеризуется высокой прозрачностью, хорошим блеском и большой плотностью. Изделия из хрусталя в руке чувствуются по массе.

Строго хрусталем называют свинцово-калиевое стекло. Хрустальное стекло, в котором часть K 2 О заменена на Na 2 O, а часть PbO заменена на CaO, MgO, BaO или ZnO, называют полухрусталем.

Считают, что хрусталь был открыт в Англии в XVII столетии.

Кварцевое стекло

Его получают плавлением чистого кварцевого песка или горного хрусталя, имеющих состав SiO 2 . Для изготовления кварцевого стекла требуется очень высокая температура (выше 1700°C).

Расплавленный кварц обладает высокой вязкостью и из него трудно удаляются пузырьки воздуха. Поэтому кварцевое стекло часто легко узнается по заключенным в нем пузырькам. Важнейшим свойством кварцевого стекла является способность выдерживать любые температурные скачки. Например, кварцевые трубы диаметром 10...30 мм выдерживают многократное нагревание до 800...900°C и охлаждение в воде. Брусья из кварцевого стекла, охлаждаемые с одной стороны, сохраняют на противоположной стороне температуру 1500°C и потому используются в качестве огнеупоров. Тонкостенные изделия из кварцевого стекла выдерживают резкое охлаждение на воздухе от температуры выше 1300°C и потому с успехом используются для высокоинтенсивных источников света. Кварцевое стекло из всех стекол наиболее прозрачно для ультрафиолетовых лучей. На этой прозрачности отрицательно сказываются примеси оксидов металлов и особенно железа. Поэтому для производства кварцевого стекла, идущего на изделия для работы с ультрафиолетовым излучением, предъявляются особо жесткие требования к чистоте сырья. В особо ответственных случаях кремнезем очищается переводом в тетрафторид кремния SiF 4 (действием плавиковой кислоты) с последующим разложением водой на диоксид кремния SiO 2 и фтороводород HF.

Кварцевое стекло прозрачно и в инфракрасной области.

Ситаллы

Ситаллы – стеклокристаллические материалы, получаемые регулируемой кристаллизацией стекла. Стекло, как известно, – это твердый аморфный материал. Его самопроизвольная кристаллизация в прошлом приносила убытки на производстве. Обычно стекломасса довольно стабильна и не кристаллизуется. Однако при повторном нагревании изделия из стекла до определенной температуры стабильность стекломассы снижается и она переходит в тонкозернистый кристаллический материал. Технологи научились проводить процесс кристаллизации стекла, исключая его растрескивание.

При производстве изделий из стеклокристаллических материалов сначала формуют стеклянные изделия, которые повторным нагреванием подвергают направленной кристаллизации.

Ситаллы обладают высокой механической прочностью и термостойкостью, водоустойчивы и газонепроницаемы, характеризуются низким коэффициентом расширения, высокой диэлектрической проницаемостью и низкими диэлектрическими потерями. Они применяются для изготовления трубопроводов, химических реакторов, деталей насосов, фильер для формования синтетических волокон, в качестве футеровки электролизных ванн и материала для инфракрасной оптики, в электротехнической и электронной промышленности.

Прочность, легкость и огнестойкость обусловили применение ситаллов в жилищном и промышленном строительстве. Из них изготавливают навесные самонесущие панели наружных стен зданий, перегородки, плиты и блоки для внутренней облицовки стен, мощения дорог и тротуаров, оконные коробки, ограждения балконов, лестничные марши, волнистую кровлю, санитарно-техническое оборудование. В быту с ситаллами чаще встречаются в виде белой непрозрачной жаростойкой кухонной посуды. Установлено, что ситаллы выдерживают около 600 резких тепловых смен. Изделия из ситаллов не царапаются и не прогорают. Их можно снять с плиты в раскаленном до красна состоянии и опустить в ледяную воду, извлечь из холодильника и поставить на открытое пламя, не опасаясь растрескивания или разрушения.

Ситаллы – один из видов стеклокристаллических материалов, которые ведут свою историю всего лишь с 50-х годов текущего столетия, когда был выдан на них первый патент.

«Безопасные» стекла

Вероятно, каждому городскому жителю довелось видеть на автотранспорте разбитое лобовое стекло. Первым из «безопасных» стекол, примененных для остекления автомобилей, был триплекс. Он и в настоящее время несет свою службу. При ударе на триплексе образуются многочисленные радиальные и концентрические трещины, но не осколки. Это резко снижает возможность ранения осколками стекла пассажиров. Триплекс состоит из пакета, образованного из двух или более листов обыкновенного стекла, между которыми проложена прозрачная пластичная пленка, прочно соединенная со стеклом склеивающим составом. Благодаря прочной склейке образующиеся при ударе осколки удерживаются на прокладке. Наиболее широко распространенным является трехслойный триплекс. В качестве органической прокладки в нем используют целлулоид. Его изготовление включает следующие операции: стекла покрываются с одной стороны раствором желатина в воде и высушиваются, целлулоидная прокладка обрабатывается с двух сторон дигликолево-спиртовым составом, собранный пакет помещается в вакуум, а затем подогревается до 100°C и прессуется в автоклаве при давлении около 15 атм. Заключительной операцией после обточки абразивными кругами является шпаклевка кромок триплекса смолистыми составами, предотвращающая действие воды на желатин и расслаивание изделия.

В промышленном строительстве широко применяют «армированное» стекло, внутрь которого введена металлическая сетка. Это стекло также может быть отнесено к безопасным, так как при ударе его осколки не рассыпаются, а удерживаются сеткой. «Армированные» стекла обладают противопожарными свойствами, поскольку задерживают развитие пламени в помещениях. Это происходит потому, что от пламени такие стекла не высыпаются из рамы, а лишь растрескиваются. В результате они препятствуют образованию сквозняков, раздувающих огонь.

Пеностекло

Пеностекло – пористый материал, представляющий собой стеклянную массу, пронизанную многочисленными пустотами. Оно обладает тепло- и звукоизоляционными свойствами, небольшой плотностью (примерно в 10 раз легче кирпича) и высокой прочностью, сравнимой с бетоном. Пеностекло не тонет в воде и потому используется для изготовления понтонных мостов и спасательных принадлежностей. Однако его главная область применения – строительство. Пеностекло является исключительно эффективным материалом для заполнения внутренних и наружных стен зданий. Оно легко поддается механической обработке: пилением, резанием, сверлением и обтачиванию на токарном станке.

Для изготовления пеностекла используют стеклянный бой и различные отходы стекольного производства. К ним добавляют пенообразователи, которые образуют газы при высокой температуре: кокс, мел и др. Стеклянный бой и пенообразователи подвергаются тонкому измельчению и хорошо перемешиваются. Смесь помещается в железные формы и нагревается в печи до 700...800°C, при которых пылинки стекла спекаются и образуют полости. При дальнейшем повышении температуры пенообразователи приводят к образованию газов, растягивающих стеклянные полости (процесс вспенивания). Затем следует довольно резкое охлаждение, в результате чего вязкость стекольной массы повышается, пена становится устойчивой и при дальнейшем охлаждении окончательно закрепляется.

Стеклянная вата и волокно

При нагревании стекло размягчается и легко вытягивается в тонкие и длинные нити. Тонкие стеклянные нити не имеют и признаков хрупкости. Их характерным свойством является чрезвычайно высокое удельное сопротивление разрыву. Нить диаметром 3...5 мкм имеет сопротивление на разрыв 200...400 кг/мм 2 , т.е. приближается по этой характеристике к мягкой стали. Из нитей изготавливают стекловату, стекловолокно и стеклоткани. Не трудно догадаться об областях использования этих материалов. Стекловата обладает прекрасными тепло- и звукоизоляционными свойствами. Ткани, изготовленные из стеклянного волокна, обладают чрезвычайно высокой химической стойкостью. Поэтому их применяют в химической промышленности в качестве фильтров кислот, щелочей и химически активных газов. Вследствие хорошей огнестойкости стеклоткани применяют для пошива одежды пожарных и электросварщиков, театральных занавесей, драпировок, ковров и т.п. Стеклоткани кроме огнестойкости и химической стойкости обладают также высокими электроизоляционными свойствами.

Переработка в стекловату осуществляется продавливанием стекломассы через термостойкую пластину с многочисленными отверстиями («фильерами»). Вытекающие через фильеры нити захватываются вращающимся барабаном, наматываются на него и растягиваются. Растяжение нити (утоньшение) зависит от скорости вращения барабана. Роль барабана иногда играет вращающийся диск, на который падает нить.

Существует и принципиально иной способ вытягивания нитей: на вытекающие из фильер нити направляется струя пара или сжатого воздуха. Стеклянные нити растягиваются и в спутанном состоянии образуют войлок.

Стеклопластики и стеклотекстолиты

Первыми называют материалы, получаемые путем горячего прессования стекловолокна, перемешанного с синтетическими смолами. В качестве смол чаще всего используют полиэфирные, фенольные, эпоксидные и карбамидные. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности. Они успешно конкурируют с алюминием и сталью.

В строительстве стеклопластики (волнистые и плоские) применяют для покрытия крыш и для устройства внутренних перегородок. В судостроительной промышленности из них делают корпуса лодок и катеров, в электротехнической их применяют для изготовления аккумуляторных батарей, а в угольной – для труб и призабойных стоек. В некоторых странах из них изготавливают кузова автомобилей, не подвергающиеся коррозии. Стеклопластики на основе стеклянных тканей называют стеклотекстолитами. Их получают пропиткой теми же смолами стеклотканей. Затем заготовки сушат, разрезают на куски определенного формата, собирают в пакеты и прессуют под давлением.

Стеклопластики изготавливают также на основе нетканых стекломатериалов. По сравнению со стеклотекстолитами последние имеют меньшую прочность на разрыв. Эти материалы идут на изготовление облицовочных изделий, жесткой кровли, стеклошифера, стекло-черепицы, оконных проемов.

Посуда из стекла

Качество посуды зависит от состава стекла, способа ее выработки и характера декоративной обработки. Самым дешевым стеклом является кальциево-натриевое. Для посуды улучшенного качества используют кальциево-натриево-калиевое стекло, а для посуды высших сортов – кальциево-калиевое. Самые лучшие сорта посуды изготавливают из хрусталя.

Посудные изделия вырабатывают выдуванием или прессованием. Выдувание, в свою очередь, бывает машинным и ручным. Способ выработки, естественно, отражается на качестве посуды. Сложные по форме и художественные изделия изготавливают только ручным способом. Прессованные изделия легко отличаются от выдутых характерными мелкими неровностями на поверхности, в том числе и на внутренней. На выдутых изделиях они отсутствуют.

Декоративная обработка посуды подразделяется на матирование, гравирование, травление и шлифовку.

Матирование заключается в нанесении матового рисунка при сохранении блестящего фона и реже, наоборот, создании матового фона, а рисунок создается блестящими частями изделия. Для матирования поверхности используют пескоструйные аппараты, в которых создается струя сухого песка. Песчинки оставляют на поверхности мелкие сколы и царапины, которые и придают ей матовый вид, превращая блестящую поверхность изделия в непрозрачную. Для защиты части поверхности от струи песка используют шаблоны, которые накладывают на поверхность изделия. Их изготавливают из резиновых или цинковых листов.

Гравирование изделий проводят при помощи медных вращающихся дисков диаметром 2...10 мм, на которые подается масло с наждачным порошком. Простые рисунки наносят на стеклоизделия при помощи машин посредством пульсирующего нажимания на поверхность специальными иглами. Такие машины по заданной программе могут обрабатывать одновременно четыре-шесть и более изделий.

Травление изделий проводят фтороводородной кислотой. Они предварительно покрываются предохранительным слоем мастики, состоящей из смеси стойких к фтороводородной кислоте веществ (воск, парафин, битум, канифоль). По слою мастики с помощью металлической иглы прорезается рисунок, обнажающий поверхность стекла, подлежащего травлению. Далее изделие помещают на 20...30 мин в травильную ванну, заполненную фтороводородной кислотой или ее смесью с небольшим количеством серной кислоты. В зависимости от концентрации травильного раствора рисунок может быть блестящим или матовым. При использовании газообразного фтороводорода рисунок всегда получается матовым.

После завершения процесса травления изделия промывают водой, а затем для снятия защитной мастики нагревают паром или помещают в ванну с горячей водой.

Декоративная шлифовка основана на удалении части стекла с поверхности изделия. Она бывает поверхностная (валовая) и глубокая (алмазное гранение).

При валовой шлифовке создают на поверхности изделия срезы в виде кружков и овалов, а также нарезают на округлой поверхности плоские грани (обычно не по всей высоте, а на некоторой ее части). Их нарезают при помощи вертикальных кругов из естественных камней или из искусственных наждачных корундовых материалов. Вышлифованное место получается матовым и для восстановления прозрачности на нем проводится полировка на пробковых, деревянных (тополевых) или войлочных кругах.

Алмазному гранению подвергается главным образом хрустальная посуда. Это гранение заключается в прорезании глубоких клинообразных канавок, которые создают пучки лучей, звездочек и других фигур.

Глубокое гранение проводят на корундовых кругах. Круги с алмазной крошкой позволяют резко увеличить скорость резания. Однако у специалистов и ценителей хрусталя изделия, обработанные алмазным инструментом, ценятся ниже, чем обработанные корундовым. Часто для удешевления обработки изделия прессуют, а затем по углублениям проходят резцом. Естественно, такое изделие ценится гораздо ниже.

После алмазного гранения изделие подвергают шлифовке. Однако иногда канавки алмазной грани оставляют матовыми. Вкусы покупателей различны и стеклоделы должны учитывать это.

Благодаря алмазному гранению изделия приобретают особый блеск и дают игру света, особенно при искусственном освещении. Глубокой шлифовке можно подвергать изделия достаточной толщины. Поскольку хрустальное стекло характеризуется большой вязкостью и быстро охлаждается, выдуваемые из него изделия чаще всего имеют толстые стенки. Такие изделия хорошо поддаются алмазному гранению.

Алмазное гранение и поверхностная шлифовка особенно эффективны на изделиях из многослойного цветного стекла. Срезы обнажают нижележащие слои и в результате получается узор различной окраски.

Этот вопрос может вызвать чувство естественного недоумения. Зеленое стекло потому и называется зеленым, что оно − зеленое. Однако не надо спешить со снисходительными разъяснениями. Проделаем нехитрый опыт.
 Если у вас есть кусок зеленого стекла, разбейте его осторожно на несколько не очень маленьких кусочков. Затем посмотрите сквозь один из них на нить лампы накаливания. Как вы и ожидали, нить будет казаться зеленой. Наложите на этот кусочек стекла второй и снова посмотрите на нить. Вероятно, вы не заметите изменения цвета нити, она будет зеленой по-прежнему. Но если наложить на два кусочка стекла третий и посмотреть сквозь все три кусочка на нить, вы увидите ее уже неокрашенной − белесоватого цвета. Сквозь четыре кусочка нить будет казаться красноватой, а сквозь пять кусочков − рубиново-красной!
 Результат совершенно неожиданный и весьма поучительный. Оказывается, цвет стекла зависит от толщины, и зеленое в тонком слое стекло становится красным при достаточно большой толщине слоя. Таким свойством обладает, конечно, не каждое зеленое стекло, но как раз самые распространенные дешевые сорта зеленых стекол.
 Любопытно, что это же свойство присуще раствору самого важногокрасящего вещества на земле − хлорофилла. Как известно, хлорофилл окрашивает листья растений в зеленый цвет. Поместив листья в спирт, можно получить раствор хлорофилла в спирте и провести такой опыт.
 Поставьте на лист белой бумаги стакан и медленно наливайте в него раствор хлорофилла. Сначала дно стакана на просвет будет казаться Зеленым, а затем, при большой толщине слоя, раствор приобретет насыщенный темно-красный цвет.
 Вернемся к зеленому стеклу. Можно еще сильнее запутать вопрос о цвете стекла, если после лампочки накаливания посмотреть сквозь кусочки стекла на раскаленный конец кочерги. Уже через три кусочка стекла он будет виден рубиново-красным. Вот вам и второй неожиданный результат: видимый цвет стекла зависит не только от его толщины, но и от того, на какой светящийся предмет мы смотрим сквозь это стекло. Слой из трех кусочков стекла кажется бесцветным при наблюдении нити лампы накаливания и красным − при наблюдении конца раскаленной кочерги.
 С кочергой можно сделать еще один опыт, из которого следует практически важный вывод. Вынутая из печки кочерга быстро остывает. Попробуйте проследить сквозь стекла за концом кочерги во время остывания. Как мы уже говорили, конец раскаленной кочерги виден красным сквозь три кусочка стекла. Конец несколько остывшей кочерги кажется красным уже через два кусочка. Подождав еще немного, вы увидите конец кочерги красным даже через один кусочек зеленого стекла. Из этого опыта следует, что, чем выше температура раскаленного тела, тем толще должен быть слой стекла, чтобы произошло изменение его цвета. Значит, по толщине слоя стекла, необходимого для изменения цвета, можно судить о температуре раскаленного тела.
 Опыты с кочергой делают понятным устройство чрезвычайно остроумного и простого прибора, служащего для определения температур раскаленных тел, пирометрического клина. Он представляет собой действительно клин из зеленого стекла, толщина которого плавно возрастает от одного конца к другому. Клин двигается в металлической оправке с отверстием для наблюдения раскаленного тела. По краю клина нанесена шкала температур, причем температура растет от тонкого конца клина к толстому. Наставив отверстие оправки на раскаленное тело, надо двигать клин в оправке до тех пор, пока не произойдет изменение видимого цвета тела. Тогда на шкале против указателя, соединенного с оправкой, можно прочесть температуру раскаленного тела.
 Пирометрическим клином особенно часто пользуются для определения температуры расплавленного металла, например, в мартеновских печах. Несмотря на свое простое устройство, клин в опытных руках дает высокую точность.
 Вы познакомились с принципом действия полезного прибора, использующего свойства зеленого стекла, но загадка самого стекла осталась загадкой. Если Вы занимаетесь исследованием сложных вопросов в ВУЗе, то лучший способ обратится к тем кто сделает

Заказать образец

Образец 15х15:

Ваш телефон: *

Адрес доставки: *

Ваше имя:


* Ваши персональные данные используются исключительно для связи с вами, без передачи третьим лицам.

Каждому из нас важно проявить индивидуальность и чувство стиля, наполнив помещение гармонией и приятной красотой. Одним из обязательных элементов любого интерьера становятся зеркала и стекла, которые способны визуально изменять размеры и восприятие пространства, даря помещению особенную изюминку. Сегодня на смену классике приходят более смелые и оригинальные решения - таким примером становится классическое, синее стекло.

Голубое стекло становится интересным дополнением интерьера, представлено в различных формах и размерах. Легкий синий оттенок делает стекло отличным решением для больших пространств, с возможностью выполнить более оригинальный интерьер и качественную, авторскую мебель.

Почему решают купить синее стекло? Основные преимущества выбора:

Ощущение легкости и нежности, без агрессивных оттенков.

Высокие эксплуатационные характеристики.

Подходит для производства многослойного стекла.

Гармония с различными стилями интерьеров и разной мебелью.

Позволяет снизить солнечный фактор.

Надежность и простота в уходе.

Купить голубое стекло - отличное решение не только для дома или квартиры, но также при обустройстве коммерческих и административных помещений. Подходит для сочетания с низкоэмиссионным стеклом, позволяя снизить солнечный фактор. В каждом случае решение о подходящем виде стекла подбирается с учетом особенностей интерьера комнаты и личных предпочтений - помочь с идеальным выбором готовы опытные менеджеры нашей компании.

Синий цвет в интерьере - красота и глубокий смысл

Голубой и синий - популярные природные оттенки, считаются цветами неба и воды, обеспечивая успокаивающий эффект для человека. От таких цветов никогда не устаешь, в помещении поддерживается душевное равновесие и спокойствие жильцов, находясь в гармонии с природой и самим собой. Цвета нашли свое успешное применение для гармоничного оформления интерьеров квартир, офисов и коммерческих помещений.

Синие оттенки в общем интерьере способны успокаивать и немного освежать помещение. У синего цвета словно нет дна - он затягивает в себя, создавая отличные условия для раздумий и философских размышлений. Среди особенностей синего цвета следует отметить непреклонность, организованность, отражение силы характера и духа. Грамотное сочетание цветовых решений в интерьере позволит отразить свою индивидуальность и чувство стиля.

История стекла.

Стеклянные товары.

Стекло – однородное аморфное тело, которое получается при охлаждении стекломассы. Простой пример – берем кубик сахара, нагреваем его до жидкого состояния, а затем охлаждаем. Сахар теряет свою первоначальную кристаллическую структуру и становится аморфным веществом.

Впервые стекло возникло в Древнем Египте за 3 ... 4 тысячелетия до нашей эры. Однако стекла той эпохи даже по внешнему виду отличались от теперешних. Они были, как правило, малопрозрачны, содержали большое количество пузырей. Изготовляли из такого стекла главным образом украшения.

В конце VII в. производство стекла возникает в Венеции где к IX в. оно достигает высокого уровня. Известные венецианские стеклянные витражи и мозаики украшали церкви того периода, а различные художественные изделия из цветного стекла, мозаичное и филигранное стекло, зеркала являлись монополией венецианского стеклоделия. Затем это искусство проникло в другие страны Западной Европы и Ближнего Востока.

В конце XVII в. в Чехии было изобретено стекло, отличающееся чистотой, прозрачностью и твердостью и известное под названием "богемский хрусталь".

Стеклоделие в России возникло в IX - Х вв., т. е. намного раньше, чем в
Америке (XVII в.) и ранее, чем во многих других странах Западной Европы.

Первый стекольный завод в России был основан в 1638 г. под Москвой. На этом заводе изготовляли оконное стекло и другие стеклянные изделия. Большое развитие стеклоделие получило при Петре I. В этот период создаются стекольные заводы под Москвой, в Киеве и других городах. К 1760 г. в России уже насчитывалось более 25 стекольных заводов, расположенных в различных губерниях. Заводы эти вырабатывали главным образом оконное стекло, бутылки и хозяйственную посуду.

Основоположником научных основ стеклоделия в России является М.В. Ломоносов, который в 1752 г. построил под Петербургом фабрику и организовал на ней изготовление цветных стекол. М.В. Ломоносовым разработан метод горячей прессовки стекла.

Сырьевые материалы для производства стекла подразделяются на основные или стеклообразующие и вспомогательные.

С помощью основных материалов в состав стекла вводятся различные оксиды, которые при сплавлении образуют стекломассу. Свойства стекла зависят от входящих в него оксидов и их соотношения. Главный оксид - SiO2 - вводят в стекло через кварцевый песок. Песок должен быть свободен от примесей, особенно окрашивающих (оксиды железа, титана, хрома), которые вызывают голубоватые, желтоватые, зеленоватые оттенки стекла, снижают его прозрачность. С повышением содержания диоксида кремния в стекле улучшаются механическая и термическая прочность, химическая устойчивость, но повышается температура варки.


Оксид бора В2О3 облегчает варку, улучшает физико-химические свойства стекла.

Оксид алюминия А12О3 способствует повышению прочностных показателей и химической устойчивости стекла.

Щелочные оксиды Nа2О, К2О понижают температуру варки стекла, облегчают формование изделий, однако уменьшают прочность, термостойкость и химическую устойчивость.

Оксиды кальция, магния, цинка увеличивают химическую устойчивость и термостойкость изделий. Оксиды бария, свинца и цинка повышают плотность, улучшают оптические свойства и поэтому применяются в производстве хрусталя.

Вспомогательные материалы вводят для улучшения потребительских свойств стекла. По назначению их подразделяют на осветлители, обесцвечиватели, глушители, красители, восстановители и окислители.

Осветлители способствуют удалению из стекломассы газов, образующихся при разложении сырьевых материалов. Из-за газовых включений масса стекла становится непрозрачной. В качестве осветлителей применяют селитру, аммонийные соли, триоксид мышьяка. При нагревании осветлители разлагаются, в виде паров поднимаются вверх и увлекают за собой газообразные включения.

Обесцвечиватели погашают или ослабляют нежелательные цветные оттенки. Из-за небольших примесей оксидов железа стекло имеет зеленовато-голубоватый оттенок и, чтобы сделать этот оттенок незаметным применяются обесцвечиватели. Применяют 2 метода обесцвечивания-физический и химический. При физическом методе в состав стекломассы вводят дополнительный краситель, который нейтрализует действие основного. К физическим обесцвечивателям относятся соединения марганца, кобальта и др. Химические обесцвечиватели переводят окрашенные соединения в неокрашенные. К ним относится селитра, сурьма. Данные соединения переводят оксид 2-х валентного железа в оксид 3-х валентного железа, который имеет более слабую окраску.

Глушители (фториды и фосфаты) уменьшают прозрачность и обусловливают белую окраску стекла.

Красители придают стеклу нужный цвет. В качестве красителей используют оксиды или сульфиды тяжелых металлов. Окрашивание может происходить также за счет выделения в стекле коллоидных частиц свободных металлов (меди, золота, сурьмы).

В синий цвет стекло окрашивают закисью кобальта, в голубой - окисью меди, в зеленый - окисью хрома или ванадия, в фиолетовый - перекисью марганца, а в розовый - селеном и т.д.

Окислители и восстановители добавляют при варке цветных стекол для создания определенной pH среды. К ним относится селитра, углерод и т.д.

Ускорители варки способствуют ускорению варки стекла. К ним относятся фтористые соединения, алюминиевые соли и др.

Свойства стекла. Зависят от его состава.

Плотность обычного стекла 2500 кг/м3, наибольшую плотность имеют стекла с повышенным содержанием окиси свинца - до 6000 кг/м3. Зависит она в основном от наличия в составе стекла оксидов тяжелых металлов (свинца, бария, цинка) и влияет на массу изделий, оптические и термические свойства. С увеличением плотности возрастает показатель преломления света, блеск и игра света в гранях, однако термостойкость, прочность и твердость снижаются.

Оптические свойства стекла разнообразны. Стекла могут быть прозрачными (коэффициент пропускания 0,85 и более) и в разной степени заглушенными, бесцветными и окрашенными, с поверхностью блестящей и матовой. Основными оптическими свойствами стекла является: светопропускание (прозрачность), светопреломление, отражение, рассеивание и др. Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и практически не пропускают ультрафиолетовые и инфракрасные лучи. Прозрачность большинства стекол составляет 84-90%. Изменяя химический состав стекла и его окраску, можно регулировать светопропускание стекла. Показатель преломления (отношение синуса угла падения к синусу угла отражения) для обычных стекол составляет 1,5, для хрусталя 1,9. В тоже время чем выше показатель преломления, тем выше коэффициент отражения.

Стекло обладает высокой прочностью на сжатие 700-1000 МПа и малой прочностью при растяжении - 35-85 МПа.

Твердость-это способность стекла сопротивляться проникновению в него другого тела. Зависит от состава. Кварцевые стекла, а также боросиликатные малощелочные стекла обладают большой твердостью. Хрустальные стекла в 2 раза мягче обыкновенных. Твердость обычных силикатных стекол 5-7 по шкале Мооса.
Хрупкость-способность стекла сопротивляться удару. Стекло плохо сопротивляется удару, т. е. оно хрупко. Присутствие в стекле борного ангидрида, окиси магния увеличивает сопротивление стекла удару.
Теплопроводность стекла невелика, поэтому стекло используют для защиты помещений зимой. Наибольшую теплопроводность имеет кварцевое стекло.

Термическая устойчивость стекол зависит от многих факторов: состава стекла, формы и размера изделия, характера поверхности и т.д. С помощью специальной термической обработки термическая стойкость стекла может быть увеличена в несколько раз.

Электропроводность стекла небольшая (стекло является диэлектриком). В тоже время электропроводность стекол изменяется с изменением температуры (расплавленное стекло проводит ток). Наибольшее влияние на электропроводность оказывает содержание в них окиси лития; чем больше ее в составе стекла, тем выше электропроводность. Понижают электропроводность окислы двухвалентных металлов (больше всего ВаО).
Стекло поддается механической обработке: его можно пилить циркулярными пилами с алмазной набивкой, обтачивать победитовыми резцами, резать алмазом, шлифовать, полировать. В пластичном состоянии, при температуре 800-1000°С, стекло поддается формованию.