Как упростить сложный радикал. Решение квадратных уравнений, формула корней, примеры

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В 8 классе школьники на уроках математики знакомятся с таким понятием, как «радикал» или, попросту говоря, «корень». Тогда же они впервые сталкиваются с такой проблемой, как упрощение сложных радикалов. Сложные радикалы – это такие выражения, в которых один корень находится под другим. Поэтому их ещё иногда называют вложенными радикалами. В данной статье репетитор по математике и физике подробно рассказывает о том, как упростить сложный радикал .

Методы упрощения сложных радикалов

Упростить сложный радикал — значит избавиться от внешнего корня. Правильнее всего начать изучение этой темы с упрощения двойных радикалов. Ведь если мы научимся упрощать двойные радикалы, то и более сложные тоже сумеем.

Как нам избавиться от внешнего корня? Понятно, что для этого нужно преобразовать подкоренное выражение, представив его в виде полного квадрата. Для этого воспользуемся известной формулой «Квадрат разности»:

Здесь, как видите, справа у отрицательного члена есть множитель . Поэтому и под корнем давайте получим этот множитель. Для этого представим в виде произведения на :

Тогда и . Осталось только обратить внимание на то, что . Теперь видно, что под корнем у нас получился квадрат разности:

Теперь вспоминаем, что . Именно модулю. Здесь это очень важно, потому что квадратный корень – положительное число. Тогда получаем:

Ну а поскольку title="Rendered by QuickLaTeX.com" height="21" width="61" style="vertical-align: -3px;">, модуль раскрывается со знаком минус. В результате в ответе получаем:

Вот так просто нам удалось упростить этот радикал. Но есть и более сложные случаи, когда не сразу удаётся догадаться, как представить подкоренное выражение в виде полного квадрата. Например, в следующем примере.

Чтобы долго не ломать голову, можно воспользоваться следующим способом.

Напоминаю, что наша цель состоит в том, чтобы представить выражение под корнем в виде полного квадрата. Конкретно в этом примере в виде квадрата суммы:

Ну а квадрат суммы раскрывается по известной формуле, которую мы сегодня уже писали:

Так вот, идея, собственно, состоит в том, чтобы за взять иррациональную часть подкоренного выражения, а за – рациональную. Тогда получается следующая система уравнений:

Понятно, что и . Иначе не выполняется второе уравнение системы. Тогда выражаем коэффициент из второго уравнения:

Знаменатель этой дроби не равен нулю, значит нулю равен её числитель. Получаем биквадратное уравнение, которое решается стандартным способом (подробнее смотрите в приложенном видео). Решая его, мы получаем аж 4 корня. Можно взять любой. Мне больше нравится . Тогда . Итак, получаем окончательно:

Вот такой способ, как упростить сложный радикал. Есть ещё один. Для любителей запоминать сложные формулы, коим я не являюсь. Но для полноты описания расскажу и о нём тоже.

Формула сложных радикалов

Вот так выглядит эта формула:

Довольно страшная, не правда ли? Но не бойтесь, её действительно можно успешно применять в некоторых случаях. Разберём на примере:

Подставляем в формулу соответствующие значения:

Вот такой получается ответ.

Итак, сегодня на занятии я рассказал о том, как упростить сложный радикал. Если вы не знали ранее методы, о которых сегодня шла речь, то скорее всего вам еще нужно очень многому научиться, чтобы чувствовать себя уверенным на ЕГЭ или на вступительном экзамене по математике. Но не переживайте, я могу вас всему этому научить. Вся необходимая информация о моих занятиях находится на . Удачи вам!

Материал подготовил , Сергей Валерьевич

Подкоренное выражение – это алгебраическое выражение, которое находится под знаком корня (квадратного, кубического или более высокого порядка). Иногда значения разных выражений могут быть одинаковыми, например, 1/(√2 - 1) = √2 + 1. Упрощение подкоренного выражения призвано привести его к некоторой канонической форме записи. Если два выражения, которые записаны в канонической форме, по-прежнему различны, их значения не равны. В математике считается, что каноническая форма записи подкоренных выражений (а также выражений с корнями) соответствует следующим правилам:

  • Если можно, избавьтесь от дроби под знаком корня
  • Избавьтесь от выражения с дробным показателем
  • Если можно, избавьтесь от корней в знаменателе
  • Избавьтесь от операции умножения корня на корень
  • Под знаком корня нужно оставить только те члены, из которых нельзя извлечь целочисленный корень

Эти правила можно применить к выполнению тестовых заданий. Например, если вы решили задачу, но результат не совпадает ни с одним из приведенных ответов, запишите результат в канонической форме. Имейте в виду, что ответы к тестовым заданиям даются в канонической форме, поэтому если записать результат в той же форме, вы с легкостью определите правильный ответ. Если в задаче требуется «упростить ответ» или «упростить подкоренные выражения», необходимо записать результат в канонической форме. Более того, каноническая форма упрощает решение уравнений, хотя с некоторыми уравнениями легче справиться, если на время забыть о канонической форме записи.

Шаги

Избавление от полных квадратов и полных кубов

Избавление от выражения с дробным показателем

Преобразуйте выражение с дробным показателем в подкоренное выражение. Или, если нужно, преобразуйте подкоренное выражение в выражение с дробным показателем, но никогда не смешивайте такие выражения в одном уравнении, например, так: √5 + 5^(3/2). Допустим, вы решили работать с корнями; квадратный корень из n будем обозначать как √n, а кубический корень из n как куб√n.

Избавление от дробей под знаком корня

Согласно канонической форме записи корень из дроби нужно представить в виде деления корней из целых чисел.

    Посмотрите на подкоренное выражение. Если оно представляет собой дробь, перейдите к следующему шагу.

    Замените корень из дроби отношением двух корней согласно следующему тождеству: √(a/b) = √a/√b.

    • Не пользуйтесь этим тождеством, если знаменатель отрицательный или включает переменную, которая может быть отрицательной. В этом случае сначала упростите дробь.
  1. Упростите полные квадраты (если они есть). Например, √(5/4) = √5/√4 = (√5)/2.

Избавление от операции умножения корней

Избавление от множителей, которые являются полными квадратами

    Разложите подкоренное число на множители. Множители – это некоторые числа, при перемножении которых получается исходное число. Например, 5 и 4 являются двумя множителями числа 20. Если из подкоренного числа нельзя извлечь целочисленный корень, разложите такое число на возможные множители и найдите среди них полный квадрат.

    • Например, запишите все множители числа 45: 1, 3, 5, 9, 15, 45. 9 является множителем 45 (9 х 5 = 45) и полным квадратом (9 = 3^2).
  1. Вынесите за знак корня множитель, который является полным квадратом. 9 представляет собой полный квадрат, потому что 3 х 3 = 9. Избавьтесь от 9 под знаком корня и запишите 3 перед знаком корня; под знаком корня останется 5. Если вы внесете число 3 под знак корня, оно будет умножено на себя и на число 5, то есть 3 х 3 х 5 = 9 х 5 = 45. Таким образом, 3√ 5 – это упрощенная форма записи √45.

    • √45 = √(9 * 5) = √9 * √5 = 3√5.
  2. Найдите полный квадрат в подкоренном выражении с переменной. Запомните: √(a^2) = |а|. Такое выражение можно упростить до «а», но только если переменная принимает положительные значения. √(a^3) можно разложить на √а * √(а^2), потому что при перемножении одинаковых переменных их показатели складываются (а * а^2 = а^3).

    • Таким образом, в выражении а^3 полным квадратом является а^2.
  3. Вынесите за знак корня переменную, которая является полным квадратом. Избавьтесь от a^2 под знаком корня и запишите «а» перед знаком корня. Таким образом, √(а^3) = а√а.

    Приведите подобные члены и упростите любые рациональные выражения.

Избавление от корней в знаменателе (рационализация знаменателя)

  1. Согласно канонической форме знаменатель , если возможно, должен включать только целые числа (или многочлен в случае присутствия переменной).

    • Если знаменатель представляет собой одночлен под знаком корня, например, [числитель]/√5, умножьте числитель и знаменатель на этот корень: ([числитель] * √5)/(√5 * √5) = ([числитель] * √5)/5.
      • В случае кубического корня или корня большей степени умножьте числитель и знаменатель на корень с подкоренным выражением в соответствующей степени, чтобы рационализировать знаменатель. Если, например, в знаменателе находится куб√5, умножьте числитель и знаменатель на куб√(5^2).
    • Если знаменатель является выражением в виде суммы или разности квадратных корней, таких как √2 + √6, умножьте числитель и знаменатель на сопряженное выражение, то есть выражение с обратным знаком между его членами. Например: [числитель]/(√2 + √6) = ([числитель] * (√2 - √6))/((√2 + √6) * (√2 - √6)). Затем с помощью формулы разности квадратов ((а + b)(а - b) = а^2 - b^2) рационализируйте знаменатель: (√2 + √6)(√2 - √6) = (√2)^2 - (√6)^2 = 2 - 6 = -4.
      • Формулу разности квадратов можно также применять к выражению вида 5 + √3, потому что любое целое число является квадратным корнем из другого целого числа. Например: 1/(5 + √3) = (5 - √3)/((5 + √3)(5 - √3)) = (5 - √3)/(5^2 - (√3)^2) = (5 - √3)/(25 - 3) = (5 - √3)/22
      • Этот метод можно применять к сумме квадратных корней, таких как √5 - √6 + √7. Если сгруппировать это выражение в виде (√5 - √6) + √7 и умножить его на (√5 - √6) - √7, вы не избавитесь от корней, а получите выражение вида а + b * √30, где «а» и «b» – одночлены без корня. Затем полученное выражение можно умножить на сопряженное: (а + b * √30)(а - b * √30), чтобы избавиться от корней. То есть если сопряженным выражением можно воспользоваться один раз, чтобы избавиться от некоторого количества корней, то им можно пользоваться сколько угодно раз, чтобы избавиться от всех корней.
      • Этот метод также применим к корням более высоких степеней, например, к выражению «корень 4-й степени из 3 плюс корень 7-й степени из 9». В этом случае умножьте числитель и знаменатель на выражение, сопряженное выражению в знаменателе. Но здесь сопряженное выражение будет немного другим по сравнению с теми, которые описаны выше. Про этот случай можно почитать в учебниках по алгебре.
  2. К некоторым простым задачам описанные методы применить нельзя. В случае некоторых сложных задач эти методы нужно применить более одного раза. Шаг за шагом упрощайте полученные выражения, а затем проверьте, записан ли окончательный ответ в канонической форме, критерии которой приведены в самом начале данной статьи. Если ответ представлен в канонической форме, задача решена; в противном случае еще раз воспользуйтесь одним из описанных методов.
  3. Как правило, каноническая форма записи распространяется и на комплексные числа (i = √(-1)). Даже если комплексное число записано в виде i, а не корня, лучше избавиться от i в знаменателе.
  4. Некоторые из описанных здесь методов подразумевают работу с квадратными корнями. Общие принципы одинаковы для кубических корней или корней более высоких степеней, но к ним довольно сложно применить некоторые методы (в частности, метод рационализации знаменателя). Более того, поинтересуйтесь у преподавателя о правильной записи корней (куб√4 или куб√(2^2)).
  5. В некоторых разделах этой статьи понятие «каноническая форма» используется не совсем правильно; на самом деле мы должны говорить о «стандартной форме» записи. Разница заключается в том, что каноническая форма требует записывать либо 1 + √2, либо √2 +1; стандартная форма подразумевает, что оба выражения (1 + √2 и √2 +1) несомненно равны, даже если записаны по-разному. Здесь под «несомненно» имеются в виду арифметические (сложение коммутативно), а не алгебраические свойства (√2 является неотрицательным корнем из х^2-2).
  6. Если описанные методы кажутся неоднозначными или противоречат друг другу, выполните последовательные и однозначные математические действия, а ответ запишите так, как требует преподаватель или как принято в учебнике.

Продолжаем изучение темы «решение уравнений ». Мы уже познакомились с линейными уравнениями и переходим к знакомству с квадратными уравнениями .

Сначала мы разберем, что такое квадратное уравнение, как оно записывается в общем виде, и дадим связанные определения. После этого на примерах подробно разберем, как решаются неполные квадратные уравнения. Дальше перейдем к решению полных уравнений, получим формулу корней, познакомимся с дискриминантом квадратного уравнения и рассмотрим решения характерных примеров. Наконец, проследим связи между корнями и коэффициентами.

Навигация по странице.

Что такое квадратное уравнение? Их виды

Для начала надо отчетливо понимать, что такое квадратное уравнение. Поэтому разговор о квадратных уравнениях логично начать с определения квадратного уравнения, а также связанных с ним определений. После этого можно рассмотреть основные виды квадратных уравнений: приведенные и неприведенные, а также полные и неполные уравнения.

Определение и примеры квадратных уравнений

Определение.

Квадратное уравнение – это уравнение вида a·x 2 +b·x+c=0 , где x – переменная, a , b и c – некоторые числа, причем a отлично от нуля.

Сразу скажем, что квадратные уравнения часто называют уравнениями второй степени. Это связано с тем, что квадратное уравнение является алгебраическим уравнением второй степени.

Озвученное определение позволяет привести примеры квадратных уравнений. Так 2·x 2 +6·x+1=0 , 0,2·x 2 +2,5·x+0,03=0 и т.п. – это квадратные уравнения.

Определение.

Числа a , b и c называют коэффициентами квадратного уравнения a·x 2 +b·x+c=0 , причем коэффициент a называют первым, или старшим, или коэффициентом при x 2 , b – вторым коэффициентом, или коэффициентом при x , а c – свободным членом.

Для примера возьмем квадратное уравнение вида 5·x 2 −2·x−3=0 , здесь старший коэффициент есть 5 , второй коэффициент равен −2 , а свободный член равен −3 . Обратите внимание, когда коэффициенты b и/или c отрицательные, как в только что приведенном примере, то используется краткая форма записи квадратного уравнения вида 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

Стоит отметить, что когда коэффициенты a и/или b равны 1 или −1 , то они в записи квадратного уравнения обычно не присутствуют явно, что связано с особенностями записи таких . Например, в квадратном уравнении y 2 −y+3=0 старший коэффициент есть единица, а коэффициент при y равен −1 .

Приведенные и неприведенные квадратные уравнения

В зависимости от значения старшего коэффициента различают приведенные и неприведенные квадратные уравнения. Дадим соответствующие определения.

Определение.

Квадратное уравнение, в котором старший коэффициент равен 1 , называют приведенным квадратным уравнением . В противном случае квадратное уравнение является неприведенным .

Согласно данному определению, квадратные уравнения x 2 −3·x+1=0 , x 2 −x−2/3=0 и т.п. – приведенные, в каждом из них первый коэффициент равен единице. А 5·x 2 −x−1=0 , и т.п. - неприведенные квадратные уравнения, их старшие коэффициенты отличны от 1 .

От любого неприведенного квадратного уравнения с помощью деления его обеих частей на старший коэффициент можно перейти к приведенному. Это действие является равносильным преобразованием , то есть, полученное таким способом приведенное квадратное уравнение имеет те же корни, что и исходное неприведенное квадратное уравнение, или, так же как оно, не имеет корней.

Разберем на примере, как выполняется переход от неприведенного квадратного уравнения к приведенному.

Пример.

От уравнения 3·x 2 +12·x−7=0 перейдите к соответствующему приведенному квадратному уравнению.

Решение.

Нам достаточно выполнить деление обеих частей исходного уравнения на старший коэффициент 3 , он отличен от нуля, поэтому мы можем выполнить это действие. Имеем (3·x 2 +12·x−7):3=0:3 , что то же самое, (3·x 2):3+(12·x):3−7:3=0 , и дальше (3:3)·x 2 +(12:3)·x−7:3=0 , откуда . Так мы получили приведенное квадратное уравнение, равносильное исходному.

Ответ:

Полные и неполные квадратные уравнения

В определении квадратного уравнения присутствует условие a≠0 . Это условие нужно для того, чтобы уравнение a·x 2 +b·x+c=0 было именно квадратным, так как при a=0 оно фактически становится линейным уравнением вида b·x+c=0 .

Что касается коэффициентов b и c , то они могут быть равны нулю, причем как по отдельности, так и вместе. В этих случаях квадратное уравнение называют неполным.

Определение.

Квадратное уравнение a·x 2 +b·x+c=0 называют неполным , если хотя бы один из коэффициентов b , c равен нулю.

В свою очередь

Определение.

Полное квадратное уравнение – это уравнение, у которого все коэффициенты отличны от нуля.

Такие названия даны не случайно. Из следующих рассуждений это станет понятно.

Если коэффициент b равен нулю, то квадратное уравнение принимает вид a·x 2 +0·x+c=0 , и оно равносильно уравнению a·x 2 +c=0 . Если c=0 , то есть, квадратное уравнение имеет вид a·x 2 +b·x+0=0 , то его можно переписать как a·x 2 +b·x=0 . А при b=0 и c=0 мы получим квадратное уравнение a·x 2 =0 . Полученные уравнения отличаются от полного квадратного уравнения тем, что их левые части не содержат либо слагаемого с переменной x, либо свободного члена, либо и того и другого. Отсюда и их название – неполные квадратные уравнения.

Так уравнения x 2 +x+1=0 и −2·x 2 −5·x+0,2=0 – это примеры полных квадратных уравнений, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – это неполные квадратные уравнения.

Решение неполных квадратных уравнений

Из информации предыдущего пункта следует, что существует три вида неполных квадратных уравнений :

  • a·x 2 =0 , ему отвечают коэффициенты b=0 и c=0 ;
  • a·x 2 +c=0 , когда b=0 ;
  • и a·x 2 +b·x=0 , когда c=0 .

Разберем по порядку, как решаются неполные квадратные уравнения каждого из этих видов.

a·x 2 =0

Начнем с решения неполных квадратных уравнений, в которых коэффициенты b и c равны нулю, то есть, с уравнений вида a·x 2 =0 . Уравнению a·x 2 =0 равносильно уравнение x 2 =0 , которое получается из исходного делением его обеих частей на отличное от нуля число a . Очевидно, корнем уравнения x 2 =0 является нуль, так как 0 2 =0 . Других корней это уравнение не имеет, что объясняется , действительно, для любого отличного от нуля числа p имеет место неравенство p 2 >0 , откуда следует, что при p≠0 равенство p 2 =0 никогда не достигается.

Итак, неполное квадратное уравнение a·x 2 =0 имеет единственный корень x=0 .

В качестве примера приведем решение неполного квадратного уравнения −4·x 2 =0 . Ему равносильно уравнение x 2 =0 , его единственным корнем является x=0 , следовательно, и исходное уравнение имеет единственный корень нуль.

Краткое решение в этом случае можно оформить следующим образом:
−4·x 2 =0 ,
x 2 =0 ,
x=0 .

a·x 2 +c=0

Теперь рассмотрим, как решаются неполные квадратные уравнения, в которых коэффициент b равен нулю, а c≠0 , то есть, уравнения вида a·x 2 +c=0 . Мы знаем, что перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также деление обеих частей уравнения на отличное от нуля число дают равносильное уравнение. Поэтому можно провести следующие равносильные преобразования неполного квадратного уравнения a·x 2 +c=0 :

  • перенести c в правую часть, что дает уравнение a·x 2 =−c ,
  • и разделить обе его части на a , получаем .

Полученное уравнение позволяет сделать выводы о его корнях. В зависимости от значений a и c значение выражения может быть отрицательным (например, если a=1 и c=2 , то ) или положительным, (к примеру, если a=−2 и c=6 , то ), оно не равно нулю, так как по условию c≠0 . Отдельно разберем случаи и .

Если , то уравнение не имеет корней. Это утверждение следует из того, что квадрат любого числа есть число неотрицательное. Из этого вытекает, что когда , то ни для какого числа p равенство не может быть верным.

Если , то дело с корнями уравнения обстоит иначе. В этом случае, если вспомнить о , то сразу становится очевиден корень уравнения , им является число , так как . Несложно догадаться, что и число тоже является корнем уравнения , действительно, . Других корней это уравнение не имеет, что можно показать, например, методом от противного. Сделаем это.

Обозначим только что озвученные корни уравнения как x 1 и −x 1 . Предположим, что уравнение имеет еще один корень x 2 , отличный от указанных корней x 1 и −x 1 . Известно, что подстановка в уравнение вместо x его корней обращает уравнение в верное числовое равенство . Для x 1 и −x 1 имеем , а для x 2 имеем . Свойства числовых равенств нам позволяют выполнять почленное вычитание верных числовых равенств, так вычитание соответствующих частей равенств и дает x 1 2 −x 2 2 =0 . Свойства действий с числами позволяют переписать полученное равенство как (x 1 −x 2)·(x 1 +x 2)=0 . Мы знаем, что произведение двух чисел равно нулю тогда и только тогда, когда хотя бы одно из них равно нулю. Следовательно, из полученного равенства следует, что x 1 −x 2 =0 и/или x 1 +x 2 =0 , что то же самое, x 2 =x 1 и/или x 2 =−x 1 . Так мы пришли к противоречию, так как вначале мы сказали, что корень уравнения x 2 отличен от x 1 и −x 1 . Этим доказано, что уравнение не имеет других корней, кроме и .

Обобщим информацию этого пункта. Неполное квадратное уравнение a·x 2 +c=0 равносильно уравнению , которое

  • не имеет корней, если ,
  • имеет два корня и , если .

Рассмотрим примеры решения неполных квадратных уравнений вида a·x 2 +c=0 .

Начнем с квадратного уравнения 9·x 2 +7=0 . После переноса свободного члена в правую часть уравнения, оно примет вид 9·x 2 =−7 . Разделив обе части полученного уравнения на 9 , придем к . Так как в правой части получилось отрицательное число, то это уравнение не имеет корней, следовательно, и исходное неполное квадратное уравнение 9·x 2 +7=0 не имеет корней.

Решим еще одно неполное квадратное уравнение −x 2 +9=0 . Переносим девятку в правую часть: −x 2 =−9 . Теперь делим обе части на −1 , получаем x 2 =9 . В правой части находится положительное число, откуда заключаем, что или . После записываем окончательный ответ: неполное квадратное уравнение −x 2 +9=0 имеет два корня x=3 или x=−3 .

a·x 2 +b·x=0

Осталось разобраться с решением последнего вида неполных квадратных уравнений при c=0 . Неполные квадратные уравнения вида a·x 2 +b·x=0 позволяет решить метод разложения на множители . Очевидно, мы можем , находящийся в левой части уравнения, для чего достаточно вынести за скобки общий множитель x . Это позволяет перейти от исходного неполного квадратного уравнения к равносильному уравнению вида x·(a·x+b)=0 . А это уравнение равносильно совокупности двух уравнений x=0 и a·x+b=0 , последнее из которых является линейным и имеет корень x=−b/a .

Итак, неполное квадратное уравнение a·x 2 +b·x=0 имеет два корня x=0 и x=−b/a .

Для закрепления материала разберем решение конкретного примера.

Пример.

Решите уравнение .

Решение.

Выносим x за скобки, это дает уравнение . Оно равносильно двум уравнениям x=0 и . Решаем полученное линейное уравнение: , и выполнив деление смешанного числа на обыкновенную дробь, находим . Следовательно, корнями исходного уравнения являются x=0 и .

После получения необходимой практики, решения подобных уравнений можно записывать кратко:

Ответ:

x=0 , .

Дискриминант, формула корней квадратного уравнения

Для решения квадратных уравнений существуют формула корней. Запишем формулу корней квадратного уравнения : , где D=b 2 −4·a·c – так называемый дискриминант квадратного уравнения . Запись по сути означает, что .

Полезно знать, как была получена формула корней, и как она применяется при нахождении корней квадратных уравнений. Разберемся с этим.

Вывод формулы корней квадратного уравнения

Пусть нам нужно решить квадратное уравнение a·x 2 +b·x+c=0 . Выполним некоторые равносильные преобразования :

  • Обе части этого уравнения мы можем разделить на отличное от нуля число a , в результате получим приведенное квадратное уравнение .
  • Теперь выделим полный квадрат в его левой части: . После этого уравнение примет вид .
  • На этом этапе можно осуществить перенос двух последних слагаемых в правую часть с противоположным знаком, имеем .
  • И еще преобразуем выражение, оказавшееся в правой части: .

В итоге мы приходим к уравнению , которое равносильно исходному квадратному уравнению a·x 2 +b·x+c=0 .

Аналогичные по форме уравнения мы уже решали в предыдущих пунктах, когда разбирали . Это позволяет сделать следующие выводы, касающиеся корней уравнения :

  • если , то уравнение не имеет действительных решений;
  • если , то уравнение имеет вид , следовательно, , откуда виден его единственный корень ;
  • если , то или , что то же самое или , то есть, уравнение имеет два корня.

Таким образом, наличие или отсутствие корней уравнения , а значит и исходного квадратного уравнения, зависит от знака выражения , стоящего в правой части. В свою очередь знак этого выражения определяется знаком числителя, так как знаменатель 4·a 2 всегда положителен, то есть, знаком выражения b 2 −4·a·c . Это выражение b 2 −4·a·c , назвали дискриминантом квадратного уравнения и обозначили буквой D . Отсюда понятна суть дискриминанта – по его значению и знаку делают вывод, имеет ли квадратное уравнение действительные корни, и если имеет, то каково их количество - один или два.

Возвращаемся к уравнению , перепишем его с использованием обозначения дискриминанта: . И делаем выводы:

  • если D<0 , то это уравнение не имеет действительных корней;
  • если D=0 , то это уравнение имеет единственный корень ;
  • наконец, если D>0 , то уравнение имеет два корня или , которые в силу можно переписать в виде или , а после раскрытия и приведения дробей к общему знаменателю получаем .

Так мы вывели формулы корней квадратного уравнения, они имеют вид , где дискриминант D вычисляется по формуле D=b 2 −4·a·c .

С их помощью при положительном дискриминанте можно вычислить оба действительных корня квадратного уравнения. При равном нулю дискриминанте обе формулы дают одно и то же значение корня, соответствующее единственному решению квадратного уравнения. А при отрицательном дискриминанте при попытке воспользоваться формулой корней квадратного уравнения мы сталкиваемся с извлечением квадратного корня из отрицательного числа, что выводит нас за рамки и школьной программы. При отрицательном дискриминанте квадратное уравнение не имеет действительных корней, но имеет пару комплексно сопряженных корней, которые можно найти по тем же полученным нами формулам корней .

Алгоритм решения квадратных уравнений по формулам корней

На практике при решении квадратных уравнения можно сразу использовать формулу корней, с помощью которой вычислить их значения. Но это больше относиться к нахождению комплексных корней.

Однако в школьном курсе алгебры обычно речь идет не о комплексных, а о действительных корнях квадратного уравнения. В этом случае целесообразно перед использованием формул корней квадратного уравнения предварительно найти дискриминант, убедиться, что он неотрицательный (в противном случае можно делать вывод, что уравнение не имеет действительных корней), и уже после этого вычислять значения корней.

Приведенные рассуждения позволяют записать алгоритм решения квадратного уравнения . Чтобы решить квадратное уравнение a·x 2 +b·x+c=0 , надо:

  • по формуле дискриминанта D=b 2 −4·a·c вычислить его значение;
  • заключить, что квадратное уравнение не имеет действительных корней, если дискриминант отрицательный;
  • вычислить единственный корень уравнения по формуле , если D=0 ;
  • найти два действительных корня квадратного уравнения по формуле корней , если дискриминант положительный.

Здесь лишь заметим, что при равном нулю дискриминанте можно использовать и формулу , она даст то же значение, что и .

Можно переходить к примерам применения алгоритма решения квадратных уравнений.

Примеры решения квадратных уравнений

Рассмотрим решения трех квадратных уравнений с положительным, отрицательным и равным нулю дискриминантом. Разобравшись с их решением, по аналогии можно будет решить любое другое квадратное уравнение. Начнем.

Пример.

Найдите корни уравнения x 2 +2·x−6=0 .

Решение.

В этом случае имеем следующие коэффициенты квадратного уравнения: a=1 , b=2 и c=−6 . Согласно алгоритму, сначала надо вычислить дискриминант, для этого подставляем указанные a , b и c в формулу дискриминанта, имеем D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28 . Так как 28>0 , то есть, дискриминант больше нуля, то квадратное уравнение имеет два действительных корня. Найдем их по формуле корней , получаем , здесь можно упростить полученные выражения, выполнив вынесение множителя за знак корня с последующим сокращением дроби:

Ответ:

Переходим к следующему характерному примеру.

Пример.

Решите квадратное уравнение −4·x 2 +28·x−49=0 .

Решение.

Начинаем с нахождения дискриминанта: D=28 2 −4·(−4)·(−49)=784−784=0 . Следовательно, это квадратное уравнение имеет единственный корень, который находим как , то есть,

Ответ:

x=3,5 .

Остается рассмотреть решение квадратных уравнений с отрицательным дискриминантом.

Пример.

Решите уравнение 5·y 2 +6·y+2=0 .

Решение.

Здесь такие коэффициенты квадратного уравнения: a=5 , b=6 и c=2 . Подставляем эти значения в формулу дискриминанта, имеем D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4 . Дискриминант отрицательный, следовательно, данное квадратное уравнение не имеет действительных корней.

Если же потребуется указать комплексные корни, то применяем известную формулу корней квадратного уравнения , и выполняем действия с комплексными числами :

Ответ:

действительных корней нет, комплексные корни таковы: .

Еще раз отметим, что если дискриминант квадратного уравнения отрицательный, то в школе обычно сразу записывают ответ, в котором указывают, что действительных корней нет, и не находят комплексные корни.

Формула корней для четных вторых коэффициентов

Формула корней квадратного уравнения , где D=b 2 −4·a·c позволяет получить формулу более компактного вида, позволяющую решать квадратные уравнения с четным коэффициентом при x (или просто с коэффициентом, имеющим вид 2·n , например, , или 14·ln5=2·7·ln5 ). Выведем ее.

Допустим нам нужно решить квадратное уравнение вида a·x 2 +2·n·x+c=0 . Найдем его корни с использованием известной нам формулы. Для этого вычисляем дискриминант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c) , и дальше используем формулу корней:

Обозначим выражение n 2 −a·c как D 1 (иногда его обозначают D" ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид , где D 1 =n 2 −a·c .

Несложно заметить, что D=4·D 1 , или D 1 =D/4 . Другими словами, D 1 – это четвертая часть дискриминанта. Понятно, что знак D 1 такой же, как знак D . То есть, знак D 1 также является индикатором наличия или отсутствия корней квадратного уравнения.

Итак, чтобы решить квадратное уравнение со вторым коэффициентом 2·n , надо

  • Вычислить D 1 =n 2 −a·c ;
  • Если D 1 <0 , то сделать вывод, что действительных корней нет;
  • Если D 1 =0 , то вычислить единственный корень уравнения по формуле ;
  • Если же D 1 >0 , то найти два действительных корня по формуле .

Рассмотрим решение примера с использованием полученной в этом пункте формулы корней.

Пример.

Решите квадратное уравнение 5·x 2 −6·x−32=0 .

Решение.

Второй коэффициент этого уравнения можно представить в виде 2·(−3) . То есть, можно переписать исходное квадратное уравнение в виде 5·x 2 +2·(−3)·x−32=0 , здесь a=5 , n=−3 и c=−32 , и вычислить четвертую часть дискриминанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169 . Так как его значение положительно, то уравнение имеет два действительных корня. Найдем их, используя соответствующую формулу корней:

Заметим, что можно было использовать обычную формулу корней квадратного уравнения, но в этом случае пришлось бы выполнить больший объем вычислительной работы.

Ответ:

Упрощение вида квадратных уравнений

Порой, прежде чем пускаться в вычисление корней квадратного уравнения по формулам, не помешает задаться вопросом: «А нельзя ли упростить вид этого уравнения»? Согласитесь, что в плане вычислений проще будет решить квадратное уравнение 11·x 2 −4·x−6=0 , чем 1100·x 2 −400·x−600=0 .

Обычно упрощение вида квадратного уравнения достигается путем умножения или деления его обеих частей на некоторое число. Например, в предыдущем абзаце удалось достичь упрощения уравнения 1100·x 2 −400·x−600=0 , разделив обе его части на 100 .

Подобное преобразование проводят с квадратными уравнениями, коэффициенты которого не являются . При этом обычно делят обе части уравнения на абсолютных величин его коэффициентов. Для примера возьмем квадратное уравнение 12·x 2 −42·x+48=0 . абсолютных величин его коэффициентов: НОД(12, 42, 48)= НОД(НОД(12, 42), 48)= НОД(6, 48)=6 . Разделив обе части исходного квадратного уравнения на 6 , мы придем к равносильному ему квадратному уравнению 2·x 2 −7·x+8=0 .

А умножение обеих частей квадратного уравнения обычно производится для избавления от дробных коэффициентов. При этом умножение проводят на знаменателей его коэффициентов. Например, если обе части квадратного уравнения умножить на НОК(6, 3, 1)=6 , то оно примет более простой вид x 2 +4·x−18=0 .

В заключение этого пункта заметим, что почти всегда избавляются от минуса при старшем коэффициенте квадратного уравнения, изменяя знаки всех членов, что соответствует умножению (или делению) обеих частей на −1 . Например, обычно от квадратного уравнения −2·x 2 −3·x+7=0 переходят к решению 2·x 2 +3·x−7=0 .

Связь между корнями и коэффициентами квадратного уравнения

Формула корней квадратного уравнения выражает корни уравнения через его коэффициенты. Отталкиваясь от формулы корней, можно получить другие зависимости между корнями и коэффициентами.

Наиболее известны и применимы формулы из теоремы Виета вида и . В частности, для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней – свободному члену. Например, по виду квадратного уравнения 3·x 2 −7·x+22=0 можно сразу сказать, что сумма его корней равна 7/3 , а произведение корней равно 22/3 .

Используя уже записанные формулы можно получить и ряд других связей между корнями и коэффициентами квадратного уравнения. К примеру, можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

На первый взгляд может показаться, что процедура разложения квадратного корня на множители сложная и неприступная. Но это не так. В этой статье мы расскажем вам, как подступиться к квадратному корню и множителям, а также легко и просто разложить квадратный корень, воспользовавшись двумя проверенными методами.

Yandex.RTB R-A-339285-1

Разложение корня на множители

Для начала определим цель процедуры разложения квадратного корня на множители. Цель - упростить квадратный корень и записать его в удобном для вычислений виде.

Определение 1

Разложение квадратного корня на множители - нахождение двух или нескольких чисел, которые, при условии перемножения их друг на друга, дадут число равное исходному. Например: 4×4 = 16.

Если вы найдете множители, то сможете легко упростить выражение с квадратным корнем или вовсе его упразднить:

Пример 1

Разделите подкоренное число на 2, если оно четное.

Подкоренное число всегда следует делить на простые числа, поскольку любое значение простого числа можно разложить на простые множители. Если у вас нечетное число, то попробуйте разделить его на 3. Не делится на 3? Делите дальше на 5, 7, 9 и т.д.

Запишите выражение в виде корня произведения двух чисел.

Например, можно упростить таким способом 98: = 98 ÷ 2 = 49 . Из этого следует, что 2 × 49 = 98 , поэтому можно переписать задачу следующим образом: 98 = (2 × 49) .

Продолжите раскладывать числа, пока под корнем не останется произведение двух одинаковых чисел и других чисел.

Возьмем наш пример (2 × 49) :

Поскольку 2 уже и так максимально упрощено, необходимо упростить 49 . Ищем простое число, на которое можно разделить 49 . Очевидно, что ни 3 , ни 5 не подходят. Остается 7: 49 ÷ 7 = 7 , поэтому 7 × 7 = 49 .

Записываем пример в следующем виде: (2 × 49) = (2 × 7 × 7) .

Упростите выражение с квадратным корнем.

Поскольку в скобках у нас произведение 2 и двух одинаковых чисел (7) , то мы можем вынести за знак корня число 7 .

Пример 2

(2 × 7 × 7) = (2) × (7 × 7) = (2) × 7 = 7 (2) .

В тот момент, когда под корнем оказалось два одинаковых числа, останавливайтесь с разложением чисел на множители. Конечно, если вы использовали все возможности по максимуму.

Запомните: существуют корни, которые можно упрощать многократно.

В таком случае, числа, которые мы выносим из-под корня, и числа, которые стоят перед ним, перемножаются.

Пример 3

180 = (2 × 90) 180 = (2 × 2 × 45) 180 = 2 45

но 45 можно разложить на множители и еще раз упростить корень.

180 = 2 (3 × 15) 180 = 2 (3 × 3 × 5) 180 = 2 × 3 5 180 = 6 5

Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.

Если после разложения подкоренного выражения на произведение простых чисел, у вас не получилось получить два одинаковых числа, то такой корень упростить нельзя.

Пример 4

70 = 35 × 2 , поэтому 70 = (35 × 2)

35 = 7 × 5 , поэтому (35 × 2) = (7 × 5 × 2)

Как видим, все три множителя - простые числа, которые нельзя разложить на множители. Среди них нет одинаковых чисел, поэтому не представляется возможным вынести целое число из-под корня. Упростить 70 нельзя.

Полный квадрат

Запомните несколько квадратов простых чисел.

Квадрат числа получается, если умножить его на самого себя, т.е. при возведении в квадрат. Если вы запомните десяток квадратов простых чисел, то это очень упростить вам жизнь в дальнейшем упрощении корней.

Пример 5

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

В случае если под знаком корня квадратного корня находится полный квадрат, то стоит убрать знак корня и записать квадратный корень данного полного квадрата.

Сложно? Нет:

Пример 6

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Попробуйте разложить число под знаком корня на произведения полного квадрата и другого числа.

Если вы видите, что подкоренное выражение раскладывается на произведение полного квадрата и какого-либо числа, то, запомнив несколько примеров, вы существенно сэкономите время и нервы:

Пример 7

50 = (25 × 2) = 5 2 . Если подкоренное число оканчивается на 25, 50 или 75, вы всегда можете разложить его на произведение 25 и какого-то числа.

1700 = (100 × 17) = 10 17 . Если подкоренное число оканчивается на 00, вы всегда можете разложить его на произведение 100 и какого-то числа.

72 = (9 × 8) = 3 8 . Если сумма цифр подкоренного числа равна 9, вы всегда можете разложить его на произведение 9 и какого-то числа.

Попробуйте разложить подкоренное число на произведение нескольких полных квадратов: вынесите их из-под знака корня и перемножьте.

Пример 8

72 = (9 × 8) 72 = (9 × 4 × 2) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter