Зарождение жизни в горячей воде. Зарождение жизни в воде на планете земля

Российский биолог и австралийский геолог рассказали о новых неожиданных открытиях, которые заставили ученых вернуться к классическим дарвиновским идеям о зарождении жизни в "теплом мелком пруду" на суше, а не в водах первичного океана Земли, и объяснили, где лучше искать ее за пределами нашей планеты.

Достаточно долгое время ученые считали, что жизнь на Земле зародилась примерно 3,5 миллиарда лет назад в первичном океане Земли, в окрестностях вулканов и геотермальных источников, так называемых "черных курильщиков", или их менее горячих собратьев - "белых курильщиков". Подобные представления, в силу большого количества доказательств их правоты, почти не подвергались сомнениям.

Армен Мулкиджанян, профессор МГУ имени М. В. Ломоносова и университета Оснабрюка в Германии, и Мартин ван Кранендонк, геолог и директор Астробиологического института Австралии, рассказали на всероссийском фестивале "Наука 0+", проходившем в стенах МГУ на прошлой неделе, о нескольких последних открытиях, которые пошатнули эти представления и заставили ученых вернуться к идее, которую озвучил еще сам Чарльз Дарвин более чем 150 лет назад.

Мир вулканов и ультрафиолета

"Абсолютно вся жизнь на Земле состоит из трех биологических полимеров - ДНК, хранилища информации, РНК, играющей роль ее переносчика, и белков, способных ускорять реакции в миллионы раз. Очевидно, что все они не могли появиться одновременно, и мы уже почти столетие пытаемся понять, какие молекулы появились первыми и как выглядела первая жизнь", - начал свой рассказ Мулкиджанян.

Исследования последних лет, как отмечает ученый, однозначно показывают, что первыми появились молекулы РНК. Они, в отличие от ДНК, сохраняют химическую активность и способны ускорять другие реакции, а также, в отличие от белков, могут играть роль переносчика информации и собирать как копии самих себя, так и другие молекулы.

По этой причине сегодня господствующей теорией зарождения жизни является гипотеза так называемого "мира РНК", в соответствии с которой изначально жизнь полностью состояла из универсальных РНК-молекул, способных исполнять сразу все функции, и лишь потом появились "узкоспециализированные" белки и ДНК.

Впадина Данакил в Эфиопии

"На Западе эти идеи стали популярны лишь в 1980-х годах, тогда как сама концепция предложена еще в 1957 году академиком Андреем Белозерским. Андрей Николаевич и его соратники открыли рибосомальную РНК, и это открытие заставило их осознать, что она не кодирует информацию, а участвует в сборе белков. Этого хватило для того, чтобы Белозерский понял, что вся жизнь могла состоять из РНК в прошлом", - продолжает Мулкиджанян.

Эта смелая гипотеза, как отмечает биолог, нашла свое подтверждение в последующие десятилетия - за последние годы ученые создали десятки молекул РНК, способных копировать себя и исполнять другие функции, которые обычно осуществляют белки, а также прототипы примитивных протоклеток на их базе. Поэтому сегодня никто не сомневается в том, что жизнь началась именно в "мире РНК", но пока ученые спорят, как и где он возник.

"Что же общего между тремя главными "молекулами жизни", а также сахарами и жирами? При их образовании, при слиянии одиночных звеньев полимерных цепей всегда выделяется вода. Как это связано с зарождением жизни? Это очень важное свойство живых существ, на которое мы обратили внимание лишь недавно. Оно означает, что для самопроизвольного появления длинных цепочек, РНК, ДНК, белков, жиров и сахаров нужно постоянно убирать эту воду, чтобы эти молекулы не распадались. Наши клетки тратят на это огромное количество энергии", - подчеркивает ученый.

Это порождает один из самых сложных и почти необъяснимых парадоксов в биологии и в изучении истории возникновения жизни. С одной стороны, вода нужна для существования жизни и химических реакций в клетках, а с другой стороны - ее большие количества будут мешать образованию первых сложных молекул, что сделает невозможным самопроизвольное формирование будущих "кирпичиков жизни".

"Сегодня среди геологов очень популярна идея о том, что жизнь могла зародиться на дне океана, у геотермальных источников, выбрасывающих огромное количество нутриентов и способных обеспечивать жизнь энергией даже в полной темноте. У этой идеи есть две проблемы: там всегда очень мокро - и эту "лишнюю" воду нельзя оттуда удалить, а во-вторых, там очень темно. Наличие света, как оказалось, является важнейшим фактором в появлении жизни. Поэтому мы считаем, что эта теория ошибочна", - заявил профессор МГУ.

Космический "слепой часовщик"

Ошибочность этой теории, по словам Мулкиджаняна, была недавно раскрыта опытами, в рамках которых российские ученые и их зарубежные коллеги попытались воспроизвести рождение "букв" РНК и ДНК - относительно просто устроенных органических молекул, получить которые, как неожиданно оказалось, очень сложно.

"Сегодня этот вопрос почему-то рассматривается очень поверхностно - многие наши коллеги просто отмахиваются от него, не пытаясь объяснить то, как возникают эти молекулы. Грубо говоря, они просто пропускают данный этап эволюции жизни, отмахиваясь от него и не объясняя, как эти вещества могли возникнуть на дне океана и как они постепенно начали усложняться и накапливаться в достаточных количествах", - продолжает ученый.

Эти вещества, как считает Мулкиджанян, возникли в ходе своеобразной химической эволюции - "неудачные" и нестабильные молекулы распадались, а более стабильные постепенно накапливались в среде и продолжали усложняться.

Роль дарвиновского "слепого часовщика", проводившего этот отбор и постепенно собиравшего эти основы жизни, по словам биолога, брали на себя две вещи - ультрафиолетовое излучение Солнца и та среда, в которой находились будущие "кирпичики жизни".

В пользу этого говорит несколько факторов. Во-первых, как отмечает биолог, все молекулы РНК и ДНК, а также отдельные их звенья уникальным образом реагируют на облучение ультрафиолетом, очень быстро избавляясь от энергии, которую им передает поглощенный квант света, преобразуя ее в тепло. Это, как отмечает исследователь, заметно сокращает вероятность того, что возбужденная молекула распадется на части. Ни белки, ни другие азотистые основания таким свойством не обладают.

Во-вторых, жизнь, судя по особенностям химического состава всех живых клеток и предположительным свойствам предка всех живых организмов, вычисленных генетическим путем, зародилась не в морской воде, а в очень необычной среде, у которой отличался не только химический состав, но и главный компонент. Растворителем в ней выступал формамид - соединение аммиака и метана, похожее по своим свойствам на воду, но кипящее при более высоких температурах.

"Первые примитивные формы жизни имели тот же химический состав, что и среда, в которой они жили, так как у них еще не было белков, способных "откачивать" ненужные элементы во внешнюю среду и не пускать их назад. Поэтому можно сказать, что первые клетки жили в особой жидкости, где было много калия, бора, фосфора, ионов переходных металлов и почти не содержалось натрия. Все это исключает возможность того, что жизнь зародилась в морской воде", - объясняет профессор.

Где такие водоемы, аналогов которым сегодня нет, могли встречаться на ранней Земле? Ответ на этот вопрос недавно нашли Мартин ван Кранендонк и его коллеги, проводящие уже два десятилетия раскопки в местечке под названием Пилбара на северо-западе Австралии, где залегают древнейшие горные породы планеты, сформировавшиеся 3,5 миллиарда лет назад.

Вулканическая колыбель жизни

"Этот регион, как давно считал сам я и мои коллеги, представлял собой мелководное дно первичного океана Земли, где в то время находился один из самых мощных очагов вулканизма на планете и где, как мы думали, обитали первые организмы на Земле. Три года назад мы нашли здесь породы, не похожие ни на что другое, полностью перевернувшие это представление", - заявил австралийский ученый.

По его словам, это открытие было совершено абсолютно случайно. Однажды, когда он и его аспирантка Тара Джокич прогуливались по зоне раскопок, она обратила внимание на странные горные породы, состоявшие из множества перемежающихся темных и светлых слоев, объединенных в волнистые структуры, содержащие множество пузырьков.

Мартин ван Кранендонк, геолог из Австралии

"Раньше мы считали, что Пилбара представляла в то время жерло супервулкана, покрытое морской водой, периодически то исчезавшей, то появлявшейся внутри него, и эти полосы мы считали следами этого процесса испарения и появления воды. Два года назад, будучи проездом в Новой Зеландии, я узнал, чем они являются, и это осознание сделало гейзеры в национальном парке Оракеи Корако моим самым любимым местом на Земле", - продолжает Кранендонк.

В окрестностях этих гейзеров Кранендонк и его коллеги нашли абсолютно такие же горные породы, так называемые гейзериты, как и в Пилбаре. Эти отложения, как оказалось, формируются на дне вулканических озер и рек, чьи воды питаются выбросами гейзеров и содержат в себе огромное количество микробов, питающихся различными химическими веществами, которые содержатся в этих водоемах.

Вода в этих реках и озерах, как вспоминает геолог, больше похожа на густой суп, чем на обычную воду, и в этом "супе" содержится множество пузырьков газов, выбрасываемых микробами. Еще большее удивление ожидало геологов тогда, когда они открыли следы бора, калия, цинка и многих других элементов, содержащихся в живых клетках и отсутствующих в морской воде.

Все это, как считает Кранендонк, указывает на то, что именно вулканические озера - а не "черные курильщики" или другие геотермальные источники на дне океана - были колыбелью жизни. Это, в свою очередь, говорит о том, что Дарвин был прав: жизнь действительно зародилась в "теплом мелком пруду".

"Уже сейчас можно сказать, что Дарвин действительно опередил время, но я, как ученый, не удержусь и покритикую его: жизнь не просто возникла в "теплом пруду", а в нескольких прудах, и в них были не только аммиак и органика, но и бор. Соответственно, мы можем поставить Дарвину только 97 из 100", - шутит геолог.

Подобные открытия, как отмечает ученый, имеют огромное значение для поиска следов внеземной жизни. Уже сейчас можно говорить, что три главных кандидата на роль ее прибежища - Европа, Энцелад и Титан, спутники Юпитера и Сатурна, вряд ли являются обитаемыми. Единственной обитаемой планетой Солнечной системы, помимо Земли, мог быть Марс, где найдены и следы гейзеров, и жидкая вода, и залежи бора и молибдена.

"Мы уже могли бы найти следы жизни на Марсе. Марсоход "Спирит" в последние дни своей работы случайно открыл отложения необычных белых пород, аналогичные тем, которые образуются от выбросов гейзеров в присутствии бактерий. Если бы я был Илоном Маском или имел миллиард долларов, я бы отправил миссию именно туда", - заключает ученый.

Земля сформировалась, вероятно, 4,5-5 млрд. лет назад из гигантского облака космической пыли. частицы которой спрессовались в раскаленный шар. Из него в атмосферу выделялся водяной пар, а из атмосферы на медленно остывавшую Землю в течение миллионов лет в виде дождей выпадала вода. В углублениях земной поверхности образовался доисторический Океан. В нем примерно 3,8 млрд. лег назад зародилась первоначальная жизнь.

Есть несколько теорий о происхождении жизни на Земле. Например, одна из давних гипотез гласит, что она занесена на Землю из космоса, но неоспоримых доказательств этого нет. Кроме того, та жизнь, которую мы знаем, удивительно приспособлена для существования именно в земных условиях, поэтому если она и возникла вне Земли, то на планете земного типа. Большинство же современных ученых полагают, что жизнь зародилась на Земле, в ее морях. Но как произошла сама планета и как на ней появились моря?

По этому поводу существует одна широко признанная теория. В соответствии с ней Земля образовалась из облаков космической пыли, содержащей все известные в природе химические элементы, которые спрессовались в шар. Горячий водяной пар вырывался с поверхности этого раскаленного докрасна шара, окутывая его сплошным облачным покровом, Водяной пар в облаках медленно охлаждался и превращался в воду, которая выпадала в виде обильных непрерывных дождей на еще раскаленную, пылающую Землю. На ее поверхности она снова превращалась в водяной пар и возвращалась в атмосферу. За миллионы лет Земля постепенно потеряла так много тепла, что ее жидкая поверхность, остывая, начала твердеть. Так образовалась земная кора.

Прошли миллионы лет, и температура поверхности Земли еще больше понизилась. Ливневые воды перестали испаряться и стали стекать в огромные лужи. Так началось воздействие воды на земную поверхность. А потом из-за понижения температуры произошел настоящий потоп. Вода, которая до этого испарялась в атмосферу и превратилась в ее составную часть, беспрерывно низвергалась на Землю, С громом и молниями обрушивались из облаков мощные ливни. Мало-помалу в самых глубоких впадинах земной поверхности скапливалась вода, которая уже не успевала совсем испариться. Ее было так много, что постепенно на планете образовался доисторический Океан. Молнии рассекали небо. Но никто этого не видел. На Земле еще не было жизни. Непрерывный ливень начал размывать горы. Вода стекала с них шумными ручьями и бурными реками. За миллионы лет водные потоки глубоко разъели земную поверхность и кое-где появились долины. В атмосфере уменьшалось содержание воды, а на поверхности планеты ее скапливалось все больше. Сплошной облачный покров становился тоньше, пока в один прекрасный день Земли не коснулся первый луч солнца. Непрерывный дождь кончился. Большую часть суши покрыл доисторический Океан. Из ее верхних слоев вода вымывала огромное количество растворимых минералов и солей, которые попадали в море. Вода из него непрерывно испарялась, образуя облака, а соли оседали, и с течением времени происходило постепенное засоление морской воды. По-видимому, при каких-то существовавших в древности условиях образовались вещества, из которых возникли особые кристаллические формы. Они росли, как и все кристаллы, и давали начало новым кристаллам, которые присоединяли к себе все новые вещества. Солнечный свет и, возможно, очень сильные электрические разряды служили в этом процессе источником энергии. Может быть, из таких элементов зародились первые обитатели Земли - прокариоты, организмы без оформленного ядра, похожие на современных бактерий. Они были анаэробами, то есть не использовали для дыхания свободный кислород, которого тогда еще не было в атмосфере. Источником пищи для них служили органические соединения, возникшие на еще безжизненной Земле в результате воздействия ультрафиолетового излучения Солнца, грозовых разрядов и тепла, образующегося при извержении вулканов. Жизнь существовала тогда в тонкой бактериальной пленке на дне водоемов и во влажных местах. Эту эру развития жизни называют архейской. Из бактерий, а возможно, и совершенно независимым путем, возникли и крошечные одноклеточные организмы - древнейшие простейшие животные.

Они и сейчас составляют основу жизни в морях и пресноводных водоемах. Они так малы, что их можно увидеть лишь с помощью микроскопа. В капле воды из небольшого пруда их тысячи и тысячи. С этих простейших одноклеточных началось развитие всей животной жизни. В конце протерозоя, следующей эры после архея, 1000 - 600 млн. лет назад, уже существовала довольно богатая фауна: медузы, полипы, плоские черви, моллюски и иглокожие.

На картинке, изображены примитивные существа, обитавшие приблизительно 600 - 570 млн. лет назад в кембрийском геологическом периоде, первом периоде палеозойской эры. Мы впервые узнали о них благодаря ископаемым окаменелостям, которые обнаружили геологи, изучавшие Кембрийские горы в Великобритании. Отсюда и произошло название геологического периода истории.

От более простых по строению животных и растений, населявших море в конце протерозоя, не сохранилось следов. Можно только предполагать, что это были организмы, состоявшие только из мягких тканей, которые после смерти быстро полностью разлагались. Настоящих рыб в кембрии еще не было, но уже жили кишечнополостные, губки, ныне вымершие археоциаты, плоские и многощетинковые черви, улитки, каракатицы, раки и трилобиты. Последние походили на раков длиной до 10 см. Для того времени это были настоящие гиганты, крупнее всех других существ. (На суше в то время жизни еще не было.) В конце кембрия, очевидно, уже появились первые хордовые, похожие на современных ланцетников. В течение последующих миллионов лет животные постепенно изменялись, и в следующем геологическом периоде - силуре, начавшемся 500 - 400 млн. лет назад, кроме многочисленных трилобитов на морском дне появились новые обитатели - морские скорпионы.

В толще вод силурийского моря пассивно дрейфовали одноклеточные организмы и медузы. А по морскому дну ползали ракообразные и трилобиты,черви и животные, защищенные раковинами, например двустворчатые моллюски и улитки. Плавать могли лишь очень немногие из них. Даже первые позвоночные, внешне уже напоминавшие рыб, обитали на морском дне. В силуре в морях и пресных водах появились и странные «рыбы» - без челюстей и парных плавников. До наших дней дожили их родственники - миксины и миноги. В силурийский период уже появились первые настоящие рыбы. У этих похожих на акул пловцов было обтекаемое, покрытое панцирем тело, плавники, рот с подвижной челюстью, напоминавшей клюв и усаженной острыми зубами. Примерно 450 млн. лет назад, в силуре, появились первые позвоночные животные - рыбы. Тело одной из древнейших - цефаласписа - было покрыто панцирной чешуей, а голова - костным панцирем. По-видимому, цефаласпис был плохим пловцом. За миллионы лет в том же геологическом периоде развились два больших класса рыб - хрящевые и костные (двоякодышащие, кистеперые и лучеперые). И хрящевым, то есть имеющим хрящевой скелет, относятся акулы и скаты. В отличие от них, скелет костных рыб частично или целиком состоит из костной ткани. К костным относятся почти все хорошо знакомые нам промысловые рыбы: сельдь, камбала, треска и скумбрия, карп, щука и многие другие. Всего на Земле в наши дни насчитывается 20 тысяч видов рыб, и населяют они не только моря, но и другие водоемы.

400 млн. лет назад силур сменился девонским геологическим периодом, который длился около 60 млн. лет. Тогда на суше появились первые растения - лишайники, которыми зарастали увлажненные берега водоемов. В течение девона от них произошли другие формы, в том числе и первые высшие растения - папоротники и хвощи. Кроме того, если прежде все животные дышали лишь кислородом, растворенным в воде, то теперь некоторые из них научились извлекать его из воздуха. Эти первые сухопутные животные - тысяченожки, скорпионы и бескрылые примитивные насекомые, вероятно, обитали поблизости от воды. Предком всех сухопутных позвоночных животных была кистеперая рыба с похожими на лапы грудными и брюшными плавниками. Постепенно у кистеперых рыб развились настоящие верхние и нижние конечности, и с течением времени появились земноводные (амфибии) и пресмыкающиеся (рептилии).

Откуда нам известно, как выглядели древние животные?

Все те изменения, которые претерпевала Земля с момента образования ее коры, изучает историческая геология. Ученые определяют возраст геологических слоев по окаменелостям - остаткам древних животных и растений, так как у каждой эпохи были свои характерные представители флоры и фауны. Изучением окаменелостей занимается палеонтология. Палеонтологи исследуют ископаемые остатки древних организмов и восстанавливают внешний облик вымерших животных. Когда живые организмы погибали в доисторическом Океане, они опускались на дно, где их покрывал ил или песок, который приносили реки. Миллионы лет илистые грунты вместе с погребенными под ними останками уплотнялись, превращаясь в камень. Мягкие ткани животных полностью разлагались но отпечаток оставался. Твердые раковины моллюсков или панцири ракообразных часто сохранялись неповрежденными. За время исторического развития Земли неоднократно морское дно под действием мощных сил и расплавленных недр планеты выталкивалось на большую высоту и становилось частью суши. Вкрапленные в горную породу остатки и отпечатки древних животных находят исследователи и по ним изучают геологические процессы. Слои горных пород для ученых - как страницы книги с множеством рисунков, и надо лишь правильно расшифровать «текст», чтобы понять, как развивалась жизнь на планете. Слои песка и ила с окаменелостями откладывались друг на друга миллионы лет. Так они и спрессовались: более древние слои - ниже, более поздние - выше. Накапливая сведения о том, в каких слоях преобладают те или иные виды окаменелостей, ученые научились определять, к какому геологическому времени они относятся. После этого уже довольно просто по найденным окаменелостям определить возраст геологической породы, в которой они были обнаружены.

Большой каньон реки Колорадо в американском штате Аризона - одно из немногих мест, где сохранилась огромная, удобная для «чтения» каменная летопись жизни на планете. Здесь река прорезала толщу осадочных пород - известняков, песчаников и сланцев - на глубину до 1800 м. Река образовала каньон, то есть глубокую долину с очень крутыми склонами и узким дном, размыв дно древнего моря. Оно поднималось очень медленно и равномерно. Горообразования, которое всегда сопровождается гигантскими сдвигами и разломами горных пород, здесь не было. Поэтому почти не изменилась последовательность залегания геологических пород. Изучив окаменелости слоев крутого склона, можно проследить за всеми изменениями, происходившими с животным миром древнего моря за сотни миллионов лет.

Материал подготовлен при использовании книги "Рыбы" издательство Слово

Земля обладает двумя особенностями, которые стали главными предпосылками возникновения жизни. Жидкая вода служит растворителем для биохимических реакций, а тектоническая энергия может эти реакции запустить. О том, как выглядела планета, когда этот процесс только начинался, в своей книге «От атомов к древу. Введение в современную науку о жизни» рассказывает биолог Сергей Ястребов. T&P и премия «Просветитель» публикуют отрывок из главы с актуальными гипотезами ученых об истоках эволюции.

Есть несколько гипотез, более-менее детально расписывающих вероятные первые химические шаги на пути к жизни. Они отличаются в деталях, но едины в главном. Все эти гипотезы предполагают, что местами зарождения жизни были не открытые водоемы, а микрополости в грунте или минеральных осадках, куда подводилась энергия от горячих источников или от вулканов. Надо сказать, что это не такая уж новость. Например, известный швейцарский биолог Карл фон Нэгели еще в XIX веке писал по поводу зарождения жизни: «Вероятно, это случилось не в открытой воде, а во влажном слое тонкого пористого материала (песка, глины), где совместно действовали молекулярные силы твердых, жидких и газообразных тел». Вот это мнение сейчас и стало научным мейнстримом. Где возникновение жизни наименее вероятно - так это в водной толще спокойного океана, освещенного солнцем. Там просто нет таких потоков энергии и вещества, которые зарождающаяся жизнь могла бы «оседлать» и перенаправить себе на пользу.

Итак, где-то в воде, пропитывавшей окрестности древних вулканов или горячих источников, начались автокаталитические (то есть самоускоряющиеся) химические реакции, цепочки которых вскоре стали пересекаться за счет общих промежуточных продуктов и замыкаться в циклы. Главные участники этих реакций, скорее всего, были небольшими органическими молекулами, поначалу даже одноуглеродными. Но реакции-то были не простыми. Особенность любой автокаталитической реакции по определению состоит в том, что ее продукт одновременно является катализатором, то есть веществом, ускоряющим ход самой реакции. При условии достаточной сложности реакционной системы (а оно в данном случае наверняка соблюдалось: и реагентов, и продуктов было множество) автокаталитические реакции приобретают свойство саморазвития, потому что в них появляется обратная связь: небольшое изменение механизма реакции влияет на состав ее продуктов, изменение которого, в свою очередь, влияет на механизм - и так шаг за шагом. Спустя какое-то время в системе автокаталитических реакций начали синтезироваться аминокислоты, простейшие углеводы, а там дело дошло и до полимеров - сперва простых, потом посложнее. Наконец, некоторые из этих полимеров «научились» катализировать сначала синтез друг друга (это совсем легко), а потом и воспроизводство самих себя. Иными словами, они стали репликаторами. А с появлением репликаторов автоматически включается дарвиновский механизм естественного отбора, необходимые и достаточные условия для которого - самовоспроизводство, наследственность, изменчивость и конкуренция за субстрат. Все, с этого момента биологическая запущена.

Можно не сомневаться, что на этих первых этапах жизнь была еще практически незаметной для постороннего наблюдателя (если бы, конечно, он мог тогда существовать). Это легко понять, если вообразить себя инопланетным путешественником, прибывшим пусть даже к самой колыбели земной жизни. Что он увидит? Теплый вулканический грунт, башни пористых осадков на морском дне… И все. Ничего примечательного. Без химического анализа такой путешественник и не понял бы, с чем столкнулся.

Первыми в истории Земли полноценными репликаторами, скорее всего, были молекулы РНК. Дело в том, что из всех биологически активных молекул только РНК может выполнять сразу все жизненно важные функции: и хранение наследственной информации, и ее копирование, и катализ реакций обмена веществ. Белки и их предшественники, более простые пептиды, никогда таких возможностей не имели. Тем не менее первые пептиды наверняка появились примерно в те же времена, что и первые РНК. Это следует из чисто химических соображений. Дело в том, что синтез РНК довольно сложен, а вот аминокислоты - причем именно альфа-аминокислоты, из которых пептиды обычно состоят, - достаточно легко синтезируются из самых простых молекул, например из угарного газа (CO) и циановодорода (HC≡N), в условиях, примерно соответствующих вероятным условиям в окрестностях древних вулканов. Поэтому существование эволюционного этапа, когда автокаталитические системы состояли бы исключительно из РНК, маловероятно. Скорее всего, эволюция пептидов и РНК была сопряженной всегда, еще со времен их гораздо более простых общих предшественников. Возможно, что дополнительной (в придачу к самокопированию) задачей первых репликаторов как раз и был катализ синтеза пептидов, влиявших на химическую среду таким образом, чтобы эти репликаторы с большей вероятностью могли выжить.

Начало эволюции жизни на Земле (до расхождения клеточных организмов на архей и бактерий). Разумеется, это гипотетический сценарий, но достаточно правдоподобный. Момент приобретения клетками (или их предшественниками) собственного механизма репликации ДНК тут намеренно не уточняется, этот вопрос все еще открыт.

Следующим важным эволюционным событием был перенос генетической информации с РНК на ДНК. Дело в том, что молекула РНК всем хороша, но вот химическая устойчивость у нее низкая и разрушается она довольно легко. Поэтому длительно хранить на ней генетическую информацию - дело ненадежное. Для этого предпочтителен какой-нибудь другой полимер. Им-то и стала . Если первые РНК вполне могли синтезироваться спонтанно в неживой природе, то синтез ДНК уже со всей определенностью является «изобретением» живых организмов, и эта молекула с самого начала получила единственную функцию: хранить информацию. Ничего другого она делать не умеет. Одно-единственное преимущество, которое имеет ДНК перед РНК, - ее высокая химическая устойчивость, позволяющая долго и надежно храниться. Для того, кто владеет уникальным «ноу-хау» синтеза каких-нибудь полезных белков, это по-настоящему ценно.

Таким образом, началась эпоха великой перезаписи геномов с РНК на ДНК.

В начале этой эпохи на Земле жили РНК-содержащие организмы, которые наверняка уже освоили к тому моменту технологию точного синтеза белка. Иными словами, ДНК появилась эволюционно позже, чем трансляция. Вполне возможно, что генетическая стратегия первых ДНК-содержащих организмов была похожа на генетическую стратегию ретровирусов. В жизненном цикле вирусов этого типа есть обязательная стадия ретротранскрипции, то есть обратной транскрипции - переноса генетической информации с РНК на ДНК. А вот собственного механизма репликации ДНК у ретровирусов нет. И у клеточных организмов его тоже, скорее всего, вначале не было. Надежные ферменты репликации (они называются ДНК-зависимые ДНК-полимеразы) появились позже. Но уж когда они появились, это дало возможность хранить на ДНК генетическую информацию непрерывно, при необходимости сразу перезаписывая ее с одной молекулы ДНК на другую. И тогда ретротранскрипция стала не нужна.

В результате образовалась самая привычная нам форма жизни: с генетической стратегией «ДНК-РНК-белок».

Признаемся честно: мы не знаем, когда именно живое вещество разбилось на клетки, отделенные от внешней среды и друг от друга замкнутыми липидными мембранами. Вполне возможно, что это произошло раньше, чем появилась репликация ДНК и исчезла обязательная ретротранскрипция.

Парадоксальным образом размножаются все живые клетки именно делением. Материнская клетка делится на две дочерние, которые получают достаточно точные копии ее генома. Цепь последовательно делящихся клеток - это цепь прямых, без всяких метафор, предков и потомков. Иногда потомки одной и той же клетки оказываются в разных условиях (или получают разные мутации) и начинают под действием естественного отбора накапливать различия. Тогда мы можем заметить, что линия предков и потомков ветвится.

Первым таким ветвлением было разделение всех клеточных организмов на архей и бактерий. Оно произошло точно раньше, чем появился полноценный механизм репликации ДНК, и наверняка раньше, чем появились клеточные мембраны современного типа. А это означает, что типичные (с нашей точки зрения) клетки, окруженные липидной мембраной и имеющие генетическую стратегию «ДНК-РНК-белок», с самого начала существовали в виде двух расходящихся эволюционных ветвей. Так возникло древо жизни.

Существует множество научных теорий о зарождении жизни на Земле. Однако большинство современных ученых считают, что жизнь зародилась в теплой , поскольку это наиболее благоприятная среда для развития простейших одноклеточных организмов.

Теория «первичного бульона»

Советский биолог Александр Иванович Опарин в 1924 году создал теорию о возникновении жизни на нашей планете посредством химической эволюции углеродосодержащих молекул. Он ввел термин «первичный бульон» для обозначения воды с высокой концентрацией подобных молекул.

Предположительно «первичный бульон» существовал 4 миллиарда лет назад в мелких водоемах Земли. Он состоял из воды, молекул азотистых оснований, полипептидов, аминокислот и нуклеотидов. «Первичный бульон» образовался под влиянием космического излучения, высокой температуры и электрических разрядов.

Органические вещества возникали из аммиака, водорода, метана и воды. Энергия для их образования могла быть получена от грозовых электрических разрядов (молний) или от ультрафиолетового излучения. А.И. Опарин предположил, что нитеобразные молекулы полученных белков могли сворачиваться и «склеиваться» друг с другом.

В лабораторных условиях ученым удалось создать подобие «первичного бульона», в котором успешно образовывались скопления белков. Однако не был решен вопрос о воспроизводстве и дальнейшем развитии коацерватных капель.

Белковые «шарики» притягивали к себе молекулы жиров и воды. Жиры располагались на поверхности белковых образований, покрывая их слоем, который по структуре отдаленно напоминал клеточную мембрану. Опарин назвал этот процесс коацервацией, а образовавшиеся скопления белков – коацерватными каплями. Со временем коацерватные капли поглощали из окружающей среды все новые порции вещества, постепенно усложняя свою структуру, пока не превратились в примитивные живые клетки.

Зарождение жизни в горячих источниках

Минеральная вода и особенно насыщенные солями горячие гейзеры могут успешно поддерживать примитивные формы жизни. Академик Ю.В. Наточин в 2005 году предположил, что средой образования живых протоклеток был не Древний океан, а теплый водоем с преобладанием ионов К+. В морской воде доминируют ионы Na+.

Теория академика Наточина подтверждается анализом содержания элементов в современных живых клетках. В них так же, как и в гейзерах, преобладают ионы К+.

В 2011 году японский ученый Тадаси Сугавара сумел создать живую клетку в горячей минерализованной воде. Примитивные бактериологические образования – строматолиты и сейчас образуются в естественных условиях в гейзерах Гренландии и Исландии.

Б ыло время - много миллионов лет тому назад, - когда живых существ не было на Земле. Но с определённого периода в истории нашей планеты - Земли - появляются живые организмы. Они зародились в море.

Покопавшись в россыпях на берегу реки или на горном склоне, можно иногда найти отпечатки или окаменелые остатки различных животных, которых нет среди живущих теперь. Среди этих ископаемых существ самые древнейшие были обитателями моря.

Вода является составной частью тела живых существ. Кровь, мышцы, жир, мозг и даже кости содержат воду в большом количестве. Обычно вода составляет 65–75 % веса тела живого организма. Тело некоторых морских животных, например медуз, содержит в себе даже 97–98 % воды. Все процессы, совершающиеся в теле животных и растений, происходят только при участии водных растворов. Без воды жизнь невозможна.

Первой заботой появившегося организма является питание. На суше отыскать пищу гораздо труднее, чем в море. Сухопутные растения должны длинными корнями добывать воду и растворённые в ней питательные вещества. Животные добывают себе пропитание с большой затратой сил. Другое дело в море. В солёной морской воде растворено много питательных веществ. Таким образом, морские растения со всех сторон окружены питательным раствором и легко его усваивают.

Не менее важно для организма поддерживать своё тело в пространстве. На суше это весьма трудная задача. Воздушная среда очень разрежена. Чтобы держаться на земле, необходимо иметь особые приспособления - сильные конечности или крепкие корни. На суше самым большим животным является слон. Но кит в 40 раз тяжелее слона. Если бы такое огромное животное начало двигаться по суше, то оно просто погибло бы, не выдержав собственной тяжести. Ни толстая кожа, ни массивные рёбра не были бы достаточной опорой для этой туши в 100 тонн весом. Совсем другое дело в воде. Всякий знает, что в воде можно легко поднять тяжёлый камень, который на суше едва сдвинешь с места. Происходит это потому, что в воде всякое тело теряет в весе столько, сколько весит вытесненная им вода. Вот почему киту для движения в воде приходится затрачивать в 10 раз меньше усилий, чем потребовалось бы этому гиганту на земле. Его тело, поддерживаемое водой со всех сторон, приобретает большую пловучесть, и киты, несмотря на свой огромный вес, могут с большой скоростью преодолевать огромные расстояния. В море живут и самые крупные растения. Водоросль макроцистис достигает 150–200 метров в длину. На земле такие гиганты редкость даже среди деревьев. Вода поддерживает огромную массу этой водоросли. Для прикрепления к грунту ей не требуется крепких корней, как наземным растениям.

Кроме того, в море температура более постоянна, чем в воздухе. А это очень важно, так как не нужно искать защиты от холода зимой и от жары летом. На суше разница между температурой воздуха зимой и летом достигает в некоторых районах 80–90 градусов. В ряде мест Сибири температура летом доходит до 35–40 градусов жары, а зимой стоят морозы в 50–55 градусов. В воде сезонные различия в температуре не превышают обычно 20 градусов. Для защиты от холода земные животные покрываются к зиме пушистым мехом, слоем подкожного жира, залегают в зимнюю спячку в берлоги и норы. Тяжело бороться с промерзающей почвой растениям. Вот почему в особо холодную зиму массами гибнут птицы и звери и другие наземные животные, а также вымерзают деревья.

В других условиях оказываются жители моря. С наступлением морозов начинается замерзание воды. Лёд легче воды. Толстый слой льда и снега препятствует проникновению холода в воду. Как тёплая шуба закрывает лёд водоём от промерзания до дна. Даже в холодной Арктике, где вечно плавают льды и большую часть года стоит морозная погода, море не замерзает до дна. Не промерзают и большие озёра и реки. А почва в Арктике промерзает на десятки метров и образуется вечная мерзлота. С трудом здесь может укорениться даже неприхотливое растение.

С наступлением морозов все водные обитатели уходят в глубину. Здесь условия их жизни мало чем отличаются в это суровое время года от летнего периода. Эти благоприятные условия жизни в море способствовали развитию величайшего разнообразия населяющих море живых организмов. До сих пор животный мир моря значительно богаче и разнообразнее, чем на суше.

В тёплой, богатой солями морской воде зародилась жизнь. Сменялись века и тысячелетия. Всё разнообразнее и обильнее становилась жизнь в море. Одни виды животных стали вытеснять другие. Борьба за существование заставляла некоторых постепенно выходить на берег, жить на берегу и заселять сушу. При этом у них выработались различные приспособления для жизни в воздушной среде. Постепенно совершенствуясь, наземные животные и растения приобрели современный облик. Процесс заселения водными животными суши идёт и теперь. На берегу моря можно часто видеть различных животных, прикрепляющихся к прибрежным скалам. Когда в отлив вода уходит, они крепко запирают створки своих раковин. Капельки воды, оставшиеся внутри створок, предохраняют жабры от высыхания и позволяют этим морским животным дышать ими во время отлива. По возвращении воды во время прилива они приоткрываются и начинают пропускать через себя свежую воду, несущую пищу и кислород для дыхания. На берег моря вылезают рыбы-прыгуны. Они долго могут ползать по прибрежным скалам и по выходящим на поверхность суши корням деревьев. Эти рыбы охотятся на воздухе даже за насекомыми. Но долго жить на берегу они не могут. Они дышат жабрами, а жабры без воды засыхают, и дыхание приостанавливается.

Из этих примеров можно себе представить, как постепенно совершался переход к наземной жизни различных водных животных.