Из чего состоит каждая хромосома. Хромосомная теория наследственности

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10 -4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

  • простым делением на две или сразу на много клеток (бактерии, простейшие);
  • вегетативно (растения, кишечнополостные);
  • делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);
  • почкованием (бактерии, кишечнополостные);
  • образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта яйцевой оболочкой, состоящей в основном из гликопротеидов.

Рис. 15. Строение яйцеклетки птицы : 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

  • изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);
  • алецитальные - почти лишены желтка (млекопитающие);
  • телолецитальные - содержат много желтка (рыбы, птицы);
  • полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.

Сегодня мы с вами вместе разберем интересный вопрос, касающийся биологии школьного курса, а именно: типы хромосом, их строение, выполняемые функции и так далее.

Для начала необходимо понять, что же это такое, хромосома? Так принято называть структурные элементы ядра в эукариотических клетках. Именно эти частички и содержат ДНК. В последней заключена наследственная информация, которая передается от родительского организма потомкам. Это возможно при помощи генов (структурных единиц ДНК).

Перед тем как мы подробно рассмотрим типы хромосом, важно познакомиться с некоторыми вопросами. Например, почему они названы именно таким термином? Еще в 1888 году такое название им дал ученый В. Вальдейер. Если переводить с греческого языка, то дословно мы получим цвет и тело. С чем же это связано? Можно узнать в статье. Очень интересен и тот факт, что хромосомами принято называть кольцевую ДНК у бактерий. И это несмотря на то, что структура последних и хромосом эукариот сильно отличается.

История

Итак, нам стало понятно, что хромосомой называют организованную структуру ДНК и белка, которая содержится в клетках. Очень интересно, что один кусочек ДНК содержит очень много генов и других элементов, которые кодируют всю генетическую информацию организма.

Перед рассмотрением типов хромосом, предлагаем немного поговорить об истории развития этих частичек. И так, эксперименты, которые начал проводить ученый Теодор Бовери еще в середине 1880 годов, продемонстрировали связь хромосом и наследственности. Тогда же Вильгельмом Ру была высказана следующая теория - каждая хромосома имеет разную генетическую нагрузку. Эта теория была протестирована и доказана Теодором Бовери.

Благодаря работе Грегора Менделя в 1900-х годах, Бовери смог отследить связь правил наследования и поведения хромосом. Открытия Бовери смогли повлиять на следующих цитологов:

  • Эдмунд Бичер Уилсон.
  • Уолтер Саттон.
  • Теофилус Пейнтер.

Работа Эдмунда Уилсона заключалась в связывании теорий Бовери и Саттона, которая описана в книге «Клетка в развитии и наследственности». Работа была опубликована примерно в 1902 году и посвящалась хромосомной теории наследственности.

Наследственность

И еще минута теории. В своих трудах исследователь Уолтер Саттон смог выяснить, сколько все-таки содержится в ядре клетки хромосом. Уже было сказано ранее, что ученый считал эти частички носителями наследственной информации. Помимо этого, Уолтер выяснил, что все хромосомы состоят из генов, вот они как раз и являются виновниками того, что потомкам передаются родительские свойства и функции.

Параллельно велись работы Теодором Бовери. Как уже говорилось ранее, оба ученых исследовали ряд вопросов:

  • передача наследственной информации;
  • формулировка основных положений о роли хромосом.

Эту теорию сейчас называют теорией Бовери-Саттона. Дальнейшая ее разработка была проведена в лаборатории американского биолога Томаса Моргана. Совместно ученые смогли:

  • установить закономерности размещения генов в данных структурных элементах;
  • разработать цитологическую базу.

Строение

В этом разделе мы предлагаем рассмотреть строение и типы хромосом. Итак, речь идет о структурных клетках, которые хранят и передают наследственную информацию. Из чего же состоят хромосомы? Из ДНК и белка. Помимо этого, составляющие части хромосом образуют хроматин. Белки при этом играют немаловажную роль для упаковки ДНК в ядре клетки.

Диаметр ядра не превышает показателя пять мкм, а ДНК упаковано полностью в ядро. Итак, ДНК в ядре имеет петельную структуру, которую поддерживают белки. Последние при этом узнают последовательности нуклеотидов для их сближения. Если вы собираетесь изучать строение хромосом под микроскопом, то лучшее для этого время - метафаза митоза.

Хромосома имеет форму небольшой палочки, которая состоит из двух хроматид. Последние удерживаются центромерой. Очень важно заметить и то, что каждая отдельная хроматида состоит из хроматиновых петель. Все хромосомы могут находиться в одном из двух состояний:

  • активном;
  • неактивном.

Формы

Сейчас мы рассмотрим существующие типы хромосом. В этом разделе вы сможете узнать, какие существуют формы этих частичек.

Все хромосомы обладают своим индивидуальным строением. Отличительная черта - особенности окрашивания. Если вы изучаете морфологию хромосом, то стоит обратить внимание на некоторые значительные вещи:

  • расположение центромеры;
  • длина и положение плеч.

Итак, существуют следующие основные типы хромосом:

  • метацентрические хромосомы (их отличительная черта - расположение центромеры посередине, эту форму еще принято называть равноплечием);
  • субметацентрические (отличительная черта - смещение перетяжки в одну из сторон, другое название - неравноплечие);
  • акроцентрические (отличительная черта - нахождение центромеры практически на одном из концов хромосомы, другое название - палочковидные);
  • точковые (такое название они получили из-за того, что их форма очень трудно определяется, что связано с маленьким размером).

Функции

Независимо от типа хромосом у человека и других существ эти частички выполняют массу различных функций. О чем идет речь можно прочесть в данном разделе статьи.

  • В хранении наследственной информации. Хромосомы являются носителями генетической информации.
  • В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК.
  • В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК, и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

ДНК и РНК

Мы рассмотрели, какие типы хромосом существуют. Теперь переходим к детальному изучению вопроса роли ДНК и РНК. Очень важно заметить, что именно нуклеиновые кислоты составляют порядка пяти процентов массы клетки. Они представляются нам в качестве мононуклеотидов и полинуклеотидов.

Всего существует два типа этих нуклеиновых кислот:

  • ДНК, что расшифровывается как дезоксирибонуклеиновые кислоты ;
  • РНК, расшифровка - рибонуклеиновые кислоты.

Помимо этого, важно запомнить, что данные полимеры состоят из нуклеотид, то есть мономеров. Эти мономеры и у ДНК, и у РНК в основном по строению схожи. Каждый отдельный нуклеотид также состоит из нескольких компонентов, а точнее, трех, соединенных между собой прочными связями.

Теперь немного о биологической роли ДНК и РНК. Для начала важно заметить, что в клетке может встретиться три вида РНК:

  • информационная (снятие информации с ДНК, выполнение роли матрицы для синтеза белка);
  • транспортная (переносит аминокислоты для синтеза белка);
  • рибосомальная (участвует в биосинтезе белка, образовании структуры рибосомы).

А в чем же заключается роль ДНК? Эти частички хранят в себе информацию наследственности. Участки этой цепи содержат специальную последовательность азотистых оснований, которые и отвечают за наследственные признаки. Помимо этого, роль ДНК заключается и в передаче этих признаков в процессе деления ядер клеток. При помощи РНК в клетках проводится синтез РНК, благодаря чему и происходит синтез белков.

Хромосомный набор

Итак, мы рассматриваем типы хромосом, наборы хромосом. Переходим к подробному рассмотрению вопроса, касающегося хромосомного набора.

Число этих элементов является характерным признаком вида. Для примера возьмем муху-дрозофилу. У нее всего насчитывается восемь, а у приматов - сорок восемь. Человеческий организм обладает сорока шестью хромосомами. Сразу обращаем ваше внимание на то, что их количество для всех клеток организма одинаково.

Помимо этого, важно понимать, что существует два возможных вида набора хромосом:

  • диплоидный (характерен для эукариотических клеток, является полным набором, то есть 2n, присутствуют в соматических клетках) ;
  • гаплоидный (половина полного набора, то есть n, присутствуют в половых клетках).

Необходимо знать, что хромосомы образуют пары, представители которой являются гомологами. Что означает этот термин? Гомологичными называют хромосомы, которые имеют одинаковую форму, строение, местоположение центромеры и так далее.

Половые хромосомы

Сейчас мы подробнее рассмотрим следующий тип хромосом - половые. Это не одна, а пара хромосом, различных у мужских и женских особей одного вида.

Как правило, один из организмов (мужской или женский) является обладателем двух одинаковых, достаточно крупных Х-хромосом, при этом генотип - ХХ. Особь другого пола обладает одной Х-хромосомой и немного меньшего размера Y-хромосомой. При этом генотип - XY. Важно заметить и то, что в некоторых случаях формирование мужского пола происходит при отсутствии одной из хромосом, то есть генотип Х0.

Аутосомы

Это парные частички у организмов с хромосомным определением пола одинаковые и у мужского пола, и у женского. Если говорить более просто, то все хромосомы (кроме половых) - это аутосомы.

Обратите внимание на то, что наличие, копии и структура никак не зависит от пола эукариот. Все аутосомы имеют порядковый номер. Если взять человека, то двадцать две пары (сорок четыре хромосомы) являются аутосомами, а одна пара (две хромосомы) - половые хромосомы.

Хромосома представляет собой вытянутую, структурированную совокупность генов, которая несет информацию о наследственности и образована из конденсированного . Хроматин состоит из ДНК и белков, которые плотно упакованы вместе для образования волокон хроматина. Конденсированные волокна хроматина образуют хромосомы. Хромосомы расположены в наших . Наборы хромосом соединяются вместе (один от матери и один от отца) и известны как .

Схема строения хромосомы на этапе метафазы

Недублированные хромосомы являются одноцепочечными и состоят из области , которая соединяет плечи хромосомы. Короткое плече обозначают буквой p , а длинное буквой q . Конечные области хромосом называются теломерами, которые состоят из повторяющихся некодирующих последовательностей ДНК, укорачивающихся во время деления клетки.

Дублирование хромосом

Хромосомное дублирование происходит до процессов деления посредством или . Процессы репликации ДНК позволяют сохранить правильное число хромосом после деления родительской клетки. Дуплицированная хромосома состоит из двух идентичных хромосом, называемых , которые связаны в области центромера. Сестринские остаются вместе до конца процесса деления, где они разделяются волокнами веретена и заключаются в . Как только парные хроматиды отделены друг от друга, каждая из них становится .

Хромосомы и деление клеток

Одним из наиболее важных элементов успешного деления клеток является правильное распределение хромосом. В митозе это означает, что хромосомы должны распределяться между двумя дочерними клетками. В мейозе хромосомы распределяются между четырьмя дочерними клетками. Веретено деления отвечает за перемещение хромосом во время деления клеток.

Такой тип движения клеток связан с взаимодействием между микротрубочками веретена и моторными белками, работающими вместе для разделения хромосом. Жизненно важно, чтобы в дочерних клетках сохранялось правильное количество хромосом. Ошибки, возникающие при делении клеток, способны приводить к неуравновешенными хромосомным числами, имеющим слишком много или недостаточно хромосом. Это отклонение известено как анеуплоидия и может происходит в аутосомных хромосомах во время митоза или в половых хромосомах во время мейоза. Аномалии в хромосомных числах могут приводить к врожденным дефектам, нарушениям развития и смерти.

Хромосомы и производство белков

Производство белка является жизненно важным клеточным процессом, который зависит от ДНК и хромосом. ДНК содержит сегменты, называемые генами, кодирующими белки. Во время производства белка ДНК разматывается, а его кодирующие сегменты транскрибируются в транскрипт РНК. Затем транскрипт РНК транслируется с образованием белка.

Мутация хромосом

Мутации хромосом - это изменения, которые происходят в хромосомах и обычно являются результатом ошибок, происходящих во время мейоза или при воздействии мутагенов, таких как химические вещества или радиация.

Поломка и дублирование хромосом может привести к нескольким типам структурных изменений хромосомы, которые обычно вредны для человека. Эти типы мутаций приводят к хромосомам с дополнительными генами, находящимися в неправильной последовательности. Мутации также могут продуцировать клетки с неправильным числом хромосом. Аномальные числа хромосом обычно возникают в результате нерасхождения или нарушения гомологичных хромосом во время мейоза.

Видеоурок 1: Деление клетки. Митоз

Видеоурок 2: Мейоз. Фазы мейоза

Лекция: Клетка - генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции

Клетка - генетическая единица живого

Базовой единицей жизни признана отдельная клетка. Именно на клеточном уровне происходят процессы, отличающие живую материю от неживой. В каждой из клеток хранится и интенсивно используется наследственная информация о химической структуре белков, которые должны синтезироваться в ней и поэтому она называется генетической единицей живого. Даже безъядерные эритроциты на начальных этапах своего существования обладают митохондриями и ядром. Только в зрелом состоянии они не имеют структур для синтеза белка.

На сегодняшний день науке неизвестны клетки, в которых бы не содержалась ДНК или РНК в качестве носителя геномной информации. При отсутствии генетического материала клетка не способна к синтезу белков, а следовательно – жизни.

ДНК имеется не только в ядрах, ее молекулы содержатся в хлоропластах и митохондриях, эти органоиды могут размножаться внутри клетки.

ДНК в клетке находится в виде хромосом – сложных белково-нуклеиновых комплексов. Хромосомы эукариот локализованы в ядре. Каждая из них представляет собой сложную структуру из:

    Единственной длинной молекулы ДНК, 2 метра которой упакованы в компактную структуру размером (у человека) до 8 мкм;

    Специальных белков-гистонов, чья роль сводится к упаковке хроматина (вещества хромосомы) в знакомую палочковидную форму;

Хромосомы, их строение (форма и размеры) и функции


Такая плотная упаковка генетического материала производится клеткой перед делением. Именно в этот момент можно рассмотреть в микроскоп плотно упакованные сформированные хромосомы. Когда ДНК свернута в компактные хромосомы, называемые гетерохроматином – синтез матричной РНК невозможен. В период набора клеткой массы и ее интерфазного развития хромосомы находятся в менее упакованном состоянии, которое названо интерхроматином и в нем синтезируется мРНК, происходит репликация ДНК.

Основными элементами структуры хромосом являются:

    Центромера. Это часть хромосомы с особой последовательностью нуклеотидов. Она соединяет между собой две хроматиды, участвует в конъюгации. Именно к ней прикрепляются белковые нити трубочек веретена деления клетки.

    Теломеры . Это концевые участки хромосом, которые не способны к соединению с другими хромосомами, они играют защитную роль. Состоят из повторяющихся участков специализированной ДНК, образующей комплексы с белками.

    Точки инициации репликации ДНК.

Хромосомы прокариот очень сильно отличаются от эукариотических, представляя собой расположенные в цитоплазме, ДНК-содержащие структуры. Геометрически они представляют собой кольцевую молекулу.

Хромосомный набор клетки имеет свое название – кариотип. Каждый из видов живых организмов имеет свои, характерные только для него состав, количество и форму хромосом.

Соматические клетки содержат диплоидный (двойной) хромосомный набор, от каждого из родителей получено по половине.

Хромосомы, отвечающие за кодирование одних и тех же функционально белков – называются гомологичными. Плоидность клеток может быть различной – как правило, у животных гаметы гаплоидны. У растений полиплоидия в настоящее время довольно частое явление, использующееся при создании новых сортов в результате гибридизации. Нарушение количества плоидности у теплокровных и человека вызывает серьезные врожденные заболевания, такие как синдром Дауна (наличие трех копий 21-й хромосомы). Чаще всего хромосомные нарушения приводят к нежизнеспособности организма.

У человека полный хромосомный набор состоит из 23 пар. Наибольшее известное число хромосом – 1600, найдено у простейших планктонных организмов – радиолярий. Самый маленький хромосомный набор у австралийских черных муравьев-бульдогов – всего 1.

Жизненный цикл клетки. Фазы митоза и мейоза


Интерфаза , иначе говоря, отрезок времени между двумя делениями, определяется наукой как жизненный цикл клетки.

В течение интерфазы в клетке совершаются жизненные химические процессы, она растет, развивается, накапливает запасные вещества. Подготовка к размножению предусматривает удвоение содержимого – органоидов, вакуолей с питательным содержимым, объема цитоплазмы. Именно благодаря делению, как способу быстрого увеличения количества клеток возможны продолжительная жизнь, размножение, увеличение размеров организма, его выживание при ранениях и регенерация тканей. В клеточном цикле выделяются следующие этапы:

    Интерфаза. Время между делениями. Сначала клетка растет, затем увеличивается число органоидов, объем запасного вещества, синтезируются белки. В последней части интерфазы хромосомы готовы к последующему делению – они состоят из пары сестринских хроматид.

    Митоз. Так называется один из способов деления ядра, характерный для телесных (соматических) клеток, в его ходе из одной получаются 2 клетки, с идентичным набором генетического материала.

Для гаметогенеза характерен мейоз. Прокариотические клетки сохранили древний способ размножения - прямое деление.

Митоз состоит из 5 основных фаз:

    Профаза. Ее началом считается момент, когда хромосомы становятся столь плотно упакованными, что видны в микроскоп. Также, в этом время разрушаются ядрышки, образуется веретено деления. Активизируются микротрубочки, продолжительность их существования уменьшается до 15 секунд, но скорость образования вырастает тоже значительно. Центриоли расходятся к противоположным сторонам клетки, формируя огромное количество постоянно синтезирующихся и распадающихся белковых микротрубочек, которые протягиваются от них к центромерам хромосом. Так формируется веретено деления. Такие мембранные структуры как ЭПС и аппарат Гольджи распадаются на отдельные пузырьки и трубочки, беспорядочно расположенные в цитоплазме. Рибосомы отделяются от мембран ЭПС.

    Метафаза . Образуется метафазная пластинка, состоящая из хромосом, уравновешенных в середине клетки усилиями противоположных центриольных микротрубочек, тянущих их каждая в свою сторону. При этом продолжается синтез и распад микротрубочек, своеобразная их «переборка». Эта фаза самая длительная.

  • Анафаза . Усилия микротрубочек отрывают соединения хромосом в области центромеры, и с силой растягивают их к полюсам клетки. При этом хромосомы из-за сопротивления цитоплазмы иногда принимают V-образную форму. В области метафазной пластинки появляется кольцо из белковых волокон.
  • Телофаза. Ее началом считается момент, когда хромосомы достигают полюсов деления. Начинается процесс восстановления внутренних мембранных структур клетки – ЭПС, аппарата Гольджи, ядра. Хромосомы распаковываются. Собираются ядрышки, начинается синтез рибосом. Веретено деления распадается.
  • Цитокинез . Последняя фаза, в которой появившееся в центральной области клетки белковое кольцо начинает сжиматься, расталкивая цитоплазму к полюсам. Происходит разделение клетки на две и образование на месте белкового кольца клеточной мембраны.

Регуляторами процесса митоза являются специфические белковые комплексы. Результатом митотического деления становится пара клеток, обладающих идентичной генетической информацией. В гетеротрофных клетках митоз протекает быстрее, чем в растительных. У гетеротрофов этот процесс может занимать от 30 минут, у растений – 2-3 часа.

Для генерации организмом клеток, имеющих половинное от нормального количество хромосом используется другой механизм деления – мейоз .

Он связан с необходимостью производства половых клеток, у многоклеточных позволяет избежать постоянного увеличения в два раза количества хромосом в последующем поколении и дает возможность получения новых комбинаций аллельных генов. Он отличается количеством фаз, являясь более длительным. Происходящее при этом уменьшение количества хромосом приводит к образованию 4 гаплоидных клеток. Мейоз представляет собой два деления, следующих друг за другом без перерыва.

Определены следующие фазы мейоза:

    Профаза I . Гомологичные хромосомы приближаются друг к другу и продольно объединяются. Такое объединение названо конъюгацией. Затем происходит кроссинговер – двойные хромосомы перекрещиваются своими плечами и обмениваются участками.

    Метафаза I. Хромосомы разъединяются и занимают места на экваторе клеточного веретена деления, принимая V-образную форму из-за натяжения микротрубочек.

    Анафаза I. Гомологичные хромосомы растягиваются микротрубочками к полюсам клетки. Но в отличие от митотического деления, они расходятся целыми, а не отдельными хроматидами.

Результатом первого деления мейоза становится образование двух клеток, имеющих половинное количество целых хромосом. Между делениями мейоза интерфаза практически отсутствует, удвоения хромосом не случается, они и так двуххроматидные.

Сразу следующее за первым повторное мейотическое деление полностью аналогично митозу – в нем хромосомы разделяются на отдельные хроматиды, распределяемые поровну между новыми клетками.

    оогонии проходят стадию митотического размножения на эмбриональном этапе развития, так что женский организм уже рождается с неизменным их количеством;

    сперматогонии способны к размножению в любой момент репродуктивного периода мужского организма. Генерируется их намного большее количество, чем женских гамет.


Гаметогенез животных организмов происходит в половых железах – гонадах.

Процесс превращения сперматогониев в сперматозоиды происходит в несколько этапов:

    Митотическое деление превращает сперматогонии в сперматоциты 1-го порядка.

    В результате однократного мейоза они превращаются в сперматоциты 2-го порядка.

    Второе мейотическое деление позволяет получить 4 гаплоидные сперматиды.

    Наступает период формирования. В клетке происходит уплотнение ядра, уменьшение количества цитоплазмы, формирование жгутика. Также, запасаются белки и увеличивается количество митохондрий.

Формирование яйцеклеток во взрослом женском организме происходит следующим образом:

    Из овоцита 1-го порядка, которых в организме находится определенное количество, в результате мейоза с уменьшением количества хромосом вдвое образуются ооциты 2-го порядка.

    В результате второго мейотического деления образуются: зрелая яйцеклетка и три мелких редукционных тельца.

Это неравновесное распределение питательных веществ между 4-мя клетками призвано обеспечить большой ресурс питательных веществ для нового живого организма.

Яйцеклетки у папоротников и мхов образуются в архегониях. У более высокоорганизованных растений – в специальных семяпочках, расположенных в завязи.




). Хроматин неоднороден, и некоторые типы такой неоднородности видны под микроскопом. Тонкая структура хроматина в интерфазном ядре, определяемая характером укладки ДНК и ее взаимодействия с белками, играет важную роль в регуляции транскрипции генов и репликации ДНК и, возможно, клеточной дифференцировки .

Последовательности нуклеотидов ДНК, которые образуют гены и служат матрицей для синтеза мРНК , распределены по всей длине хромосом (отдельные гены, разумеется, слишком малы, чтобы их можно было видеть под микроскопом). К концу XX столетия примерно для 6000 генов было установлено, на какой хромосоме и в каком участке хромосомы они находятся и каков характер их сцепления (то есть положения друг относительно друга).

Неоднородность метафазных хромосом, как уже упоминалось, можно увидеть даже при световой микроскопии. При дифференциальном окрашивании по меньшей мере в 12 хромосомах обнаружены различия в ширине некоторых полос между гомологичными хромосомами ( рис. 66.3). Такие полиморфные участки состоят из некодирующих высокоповторяющихся последовательностей ДНК.

Методы молекулярной генетики сделали возможной идентификацию огромного числа меньших по размеру и потому не выявляемых при световой микроскопии полиморфных участков ДНК. Эти участки выявляют как полиморфизм длин рестрикционных фрагментов, варьирующие по числу тандемные повторы и полиморфизм коротких тандемных повторов (моно-, ди-, три- и тетрануклеотидных). Такая изменчивость фенотипически обычно не проявляется.

Однако полиморфизм служит удобным инструментом пренатальной диагностики благодаря сцеплению определенных маркеров с мутантными генами, вызывающими заболевания (например, при миопатии Дюшенна), а также при установлении зиготности близнецов , установлении отцовства и прогнозирования отторжения трансплантата .

Трудно переоценить значение таких маркеров, особенно широко распространенных в геноме высокополиморфных коротких тандемных повторов, для картирования генома человека. В частности, они позволяют установить точный порядок и характер взаимодействия локусов, играющих важную роль в обеспечении нормального онтогенеза и клеточной дифференцировки. Это касается и тех локусов, мутации в которых приводят к наследственным заболеваниям.

Различимые под микроскопом участки на коротком плече акроцентрических аутосом ( рис. 66.1) обеспечивают синтез рРНК и образование ядрышек , поэтому их называют районами ядрышкового организатора . В метафазе они неконденсированы и не окрашиваются. Районы ядрышкового организатора примыкают к находящимся на конце короткого плеча хромосомы конденсированным участкам хроматина - спутникам. Спутники не содержат генов и являются полиморфными участками.

В небольшой части клеток удается выявить другие деконденсированные в метафазе участки, так называемые ломкие участки , где могут происходить "полные" разрывы хромосомы. Клиническое значение имеют нарушения в единственном подобном участке, расположенном на конце длинного плеча Х-хромосомы. Такие нарушения вызывают синдром ломкой Х-хромосомы .

Другие примеры специализированных районов хромосом - теломеры и центромеры .

Пока точно не установлена роль гетерохроматина , на долю которого приходится значительная часть генома человека. Гетерохроматин конденсирован в течение практически всего клеточного цикла, он неактивен и реплицируется поздно. Большинство участков конденсированы и неактивны во всех клетках (), хотя другие, например Х-хромосома, могут быть как конденсированными и неактивными, так и деконденсированными и активными ( факультативный гетерохроматин). Если из-за хромосомных аберраций гены оказываются рядом с гетерохроматином, то активность таких генов может изменяться или даже блокироваться. Поэтому проявления хромосомных аберраций , таких, как дупликации или делеции, зависят не только от затронутых локусов, но и от типа хроматина в них. Многие хромосомные аномалии, не являющиеся летальными, затрагивают неактивные или инактивируемые участки генома. Возможно, этим объясняется, что трисомии по некоторым хромосомам или моносомии по Х-хромосоме совместимы с жизнью.

Проявления хромосомной аномалии зависят также от нового расположения структурных и регуляторных генов по отношению друг к другу и к гетерохроматину.

К счастью, многие структурные особенности хромосом удается надежно обнаружить цитологическими методами. В настоящее время существует ряд методов дифференциального окрашивания хромосом ( рис. 66.1 и рис. 66.3). Расположение и ширина полос идентичны в каждой паре гомологичных хромосом, за исключением полиморфных участков, поэтому окрашивание можно использовать в клинической цитогенетике для идентификации хромосом и выявления в них структурных нарушений.