Сахароза нагревание уравнение. Сахар с точки зрения химика: молярная масса и формула

Вопрос 1. Сахароза. Её строение, свойства, получение и применение.

Ответ. Опытным путём доказано, что молекулярная форма сахарозы

– C 12 H 22 O 11 . Молекула содержит гидроксильные группы и состоит из взаимно связанных остатков молекул глюкозы и фруктозы.

Физические свойства

Чистая сахарозы – бесцветное кристаллическое вещество сладкого вкуса, хорошо растворимое в воде.

Химические свойства:

1. Подвергается гидролизу:

C 12 H 22 O 11 + H2O C 6 H 12 O 6 + C 6 H 12 O 6

2.Сахароза – невосстанавливающий сахар. Она не даёт реакции «серебряного зеркала», а с гидроксидом меди (II) взаимодействует как многоатомный спирт, не восстанавливая Cu (II) до Cu (I).

Нахождение в природе

Сахарозы входит в состав сока сахарной свеклы (16-20 %) и сахарного тростника (14-26%). В небольших количествах она содержится вместе с глюкозой в плодах и листьях многих зелёных растений.

Получение:

1. Сахарную свекл или сахарный тростник превращают в тонкую стружку и помещают в диффузоры, через которые пропускают горячую воду.

2. Полученный раствор обрабатывают известковым молоком, образуется растворимый сахарат кальция алкоголятов.

3. Для разложения сахарата кальция и нейтрализации избытка гидроксида кальция через раствор пропускают оксид углерода (IV):

C 12 H 22 O 11 CaO 2H 2 + CO 2 = C 12 H 22 O 11 + CaCO 3 + 2H 2 O

4.Полученный после осаждения карбоната кальция раствор фильтруют затем упаривают в вакуумных аппаратах и кристаллики сахара отделяют центрифугированием.

5. Выделенный сахарный песок обычно имеет желтоватый цвет, так как содержит красящие вещества. Для их отделения сахарозу растворяют в воде и пропускают через активированный уголь.

Применение:

Сахароза в основном используется в качестве продукта питания и в кондитерской отрасли промышленности. Путём гидролиза из неё получают искусственный мёд.

Вопрос 2. Особенности размещения электронов в атомах элементов малых и больших периодов. Состояния электронов в атомах.

Ответ. Атом – химически неделимая, электронейтральная частица вещества. Атом состоит из ядра и движущихся по определённым орбиталям вокруг него электронов. Атомная орбиталь – область пространства вокруг ядра, в пределах которой наиболее вероятно нахождение электрона. Орбитали называют также электронными облаками. Каждой орбитали отвечает определённая энергия а также форма и размер электронного облака. Группа орбиталей, для которых значение энергии оказываются близкими, относят к одному энергетическому уровню. На энергетическом уровне не может находится более 2n 2 электронов, где n – номер уровня.

Виды электронных облаков: шаровой формы - s-электроны, одна орбиталь на каждом энергетическом уровне; гантелеобразной формы – p-электроны, три орбитали p x , p y ,p z ; в форме напоминающей две перекрещенные гантеи, - d- электроны, пять орбиталей d xy , d xz , d yz , d 2 z , d 2 x – d 2 y .

Распределение электронов по энергетическим уровням отражает электронная конфигурация элемента.

Правила заполнения электронами энергетических уровней и

подуровней.

1.Заполнение каждого уровня начинается с s- электронов, далее происходит заполнение электронами p-, d- и f- энергетических уровней.

2.Число электронов в атоме равно его порядковому номеру.

3. Число энергетических уровней соответствует номеру периода, в котором находится элемент.

4. максимальное число электронов на энергетическом уровне определяется по формуле

Где n- номер уровня.

5. Общее число электронов на атомных орбиталях одного энергетического уровня.

Например, алюминий, заряд ядра равен +13

Распределение электронов по энергетическим уровням – 2,8,3.

Электронная конфигурация

13 Al:1s 2 2s 2 2p 6 3s 2 3p 1 .

В атомах некоторых элементов наблюдается явление проскока электронов.

Например, у хрома электроны с 4s-подуровня перескакивают на 3d- подуровень:

24 Cr 1s 2 2s 2 2p 6 3s 2 3d 5 3d 5 4s 1 .

Электрон переходит с 4s- подуровня на 3d, потому что конфигурация 3d 5 и 3d 10 являются более энергетически выгодными. Электрон занимает положение, в котором его энергия минимальная.

Заполнение электронами энергетического f-подуровня происходит у элемента 57La -71 Lu.

Вопрос 3. Распознать вещества KOH,HNO 3 ,K 2 CO 3 .

Ответ: KOH + фенолфталиен → малиновая окраска раствора;

NHO 3 + лакмус → красная окраска раствора,

K 2 CO 3 + H 2 SO 4 = K 2 SO 4 + H 2 0 +CO 2

Билет № 20

Вопрос 1. Генетическая связь органических соединений различных классов.

Ответ: Схема цепочки химических превращений:

C 2 H 2 → C 2 H 4 →C 2 H 6 →C 2 H 5 Cl→C 2 H 5 OH→CH 3 CHO→CH 3 COOH

C 6 H 6 C 2 H 5 OH CH 2 =CH-CH=CH 2 CH 3 COOC 2 H 5

C 6 H 5 Cl CH 3 O-C 2 H 5 C 4 H 10

C 2 H 2 + H 2 = C 2 H 4 ,

алкин алкен

C 2 H 4 + H 2 = C 2 H 6 ,

алкен алкан

C 2 H 6 + Cl 2 = C 2 H 5 Cl + HCl,

C 2 H 5 Cl + NaOH = C 2 H 5 OH + NaCl,

хлоралкан спирт

С 2 H 5 OH + 1/2O 2 CH 3 CHO + H 2 O,

спирт альдегид

CH 3 CHO + 2Cu(OH) 2 = CH 3 COOH + 2CuOH + H 2 O,

C 2 H 4 + H 2 O C 2 H 5 OH,

алкен спирт

C 2 H 5 OH + CH 3 OH = CH 3 O-C 2 H 5 + H 2 O,

спирт спирт простой эфир

3С 2 H 2 С 6 Н 6 ,

алкин арен

C 6 H 6 + Cl 2 = C 6 H 5 Cl + HCl,

C 6 H 5 Cl + NaOH = C 6 H 5 OH + NaCl,

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr;

2С 2 H 5 OH = CH 2 = CH-CH = CH 2 + 2H 2 O + H 2 ,

спирт диен

CH 2 = CH-CH = CH 2 + 2H 2 = C 4 H 10 .

диен алкан

Алканы- углеводороды с общей формулой С n H 2 n +2 , которые не присоединяют водород и другие элементы.

Алкены- углеводороды с общей формулой С n H 2 n , в молекулах которых между атомами углерода имеется одна двойная связь.

К диеновым углеводородам относят органические соединения с общей формулой С n H 2 n -2 , в молекулах которых имеются две двойные связи.

Углеводороды с общей формулой С n H 2 n -2 , в молекулах которых имеется одна тройная связь, относят к ряду ацетилена и называют алкинами.

Соединения углерода с водородом, в молекулах которых имеется бензольное кольцо, относят к ароматическим углеводородам.

Спиртами называются производные углеводородов, в молекулах которых один или несколько атомов водорода замещены гидроксильными группами.

К фенолам относят производные ароматических углеводородов, в молекулах которых гидроксильные группы связаны с бензольным ядром.

Альдегиды- органические вещества, содержащие функциональную группу- СНО (альдегидную группу).

Карбоновые кислоты- это органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом или атомом водорода.

К сложным эфирам относятся органические вещества, которые образуются в реакциях кислот со спиртами и содержат группу атомов С(О)-О-С.

Вопрос 2. Типы кристаллических решеток. Характеристика веществ с различными типами кристаллических решеток.

Ответ. Кристаллическая решетка – пространственное, упорядоченное взаиморасположением частиц вещества, имеющее однозначный, распознаваемый мотив.

В зависимости от вида частиц, расположенных в узлах решетки, различают: ионные (ИКР), атомные (АКР), молекулярные (МКР), металлические (Мет. КР), кристаллические решетки.

МКР – в узлах находится молекула. Примеры: лед, сероводород, аммиак, кислород, азот в твердом состоянии. Силы, действующие между молекулами, сравнительно слабые, поэтому вещества имеют малую твердость, низкие температуры кипения и плавления, плохую растворимость в воде. В обычных условиях это газы или жидкости (азот, пероксид водорода, твердый CO 2). Вещества с МКР относятся к диэлектрикам.

АКР- в узлах атомы. Примеры: бор, углерод (алмаз), кремний, германий. Атомы соединены прочными ковалентными связями, поэтому для веществ характерны высокие температуры кипения и плавления, высокая прочность и твердость. Большинство таких веществ не растворимо в воде.

ИКР – в узлах катионы и анионы. Примеры: NaCl, KF, LiBr. Такой тип решетки имеется у соединений с ионным типом связи (металл-неметалл). Вещества тугоплавкие, малолетучие, сравнительно прочные, хорошие проводники электрического тока, хорошо растворимы в воде.

Мет. КР – решетка веществ, состоящих только из атомов металла. Примеры: Na, K, Al, Zn, Pb и т.д. Агрегатное состояние твердое, нерастворимо в воде. Кроме щелочных и щелочно-земельных металлов, проводники электрического тока, температуры кипения и плавления колеблются от средних до очень высоких.

Вопрос 3. Задача. Для сжигания 70 г серы взяли 30 л кислорода. Определить объем и количество вещества, образовавшегося сернистого газа.

Дано: Найти:

m(S) = 70 г, V(SO 2) = ?

V(O 2) = 30 л. v(SO 2) = ?


Решение:

m=70 г V= 30 л x л

S + O 2 = SO 2 .

v: 1 моль 1 моль 1 моль

M: 32 г/моль -- --

V: -- 22,4 л 22, 4 л

V(O 2) теор. = 70 * 22,4/32 =49 л (O 2 в недостатке, расчет по нему).

Поскольку V(SO 2) = V(O 2), то V(SO 2) = 30 л.

v(SO 2) = 30/22,4 = 1,34 моль.

Ответ. V(SO 2) = 30 л, v = 1,34 моль.

1.1. Сахароза

Для нормального питания взрослого мужчины, не обремененного большой физической работой, требуется принимать в сутки объем пищи, питательная энергетическая ценность (калорийность) которой составляет примерно 3000 ккал. Этому соответствует прием следующего количества основных питательных веществ (в чистом виде): 100 гбелков (калорийность 1 г - 4,8 ккал, или 20,1 кДж), 100 гжиров (калорийность 9,3 ккал/г) и 400 гуглеводов (калорийность 4 ккал/г).

По калорийности углеводы уступают белкам и жирам, но в суточном рационе человека суммарная калорийность углеводов составляет более половины, а по объему пищи - около двух третей. Именно углеводы являются основным источником энергии для организма человека.

Главный углевод в питании человека - нерастворимый в воде полисахарид крахмал (в хлебном зерне, картофеле и т.п.) - для усвоения в организме должен быть прежде всего разложен на моносахариды и переведен в раствор (это производится ферментами слюны и желудочного сока), на что требуется время. Растворимый же углевод - дисахаридсахароза , или обычный сахар, разлагается на моносахариды (глюкозу и фруктозу) и усваивается значительно быстрее крахмала, поэтому человек так охотно заменяет в своем питании часть крахмала сахаром, имеющим, кроме того, сладкий вкус. Для быстрого восстановления затраченной энергии (при походах, спорте, большой физической работе, для больных и выздоравливающих) сахар как питательное вещество особенно ценен по быстроте и легкости его усваивания.

Благодаря ценным пищевым, вкусовым и физическим свойствам сахароза (сахар) сделалась важнейшим пищевым продуктом первой необходимости.

Быстрая усвояемость сахарозы, однако, не позволяет пользоваться ею как единственным пищевым углеводом. Сравнительно медленно переваривающийся крахмал равномерно снабжает кровь глюкозой. Потребление же сахарозы в значительных дозах перегружает кровь глюкозой, которая в этом случае начинает перерабатываться в жиры, т.е. начинается ожирение организма. Поэтому определено, что лишь до 20 % требуемого количества углеводов может быть потреблена в виде сахара. Таким образом, в сутки допустимо потреблять примерно 80 г сахара во всех его видах (в натуре, в кондитерских изделиях, в напитках и т.п.), что составляет около 30 кг сахара в год.

Обычный сахар, который мы покупаем в магазине, более чем на 99,7 % состоит из сахарозы.

САХАРОЗА принадлежит к большому классу естественных органических веществ, называемых углеводами (соединениями атомов углерода и молекул воды) с общей формулой:C m (H 2 O) n

К этому классу относятся более или менее сладкие на вкус сахара как моносахариды (например, глюкоза и фруктоза), так и олигосахариды (например, сахароза и раффиноза), а также полисахариды (например, целлюлоза и крахмал).

Сахароза (тростниковый, свекловичный сахар) представляет собой дисахарид с общей эмпирической формулойС 12 Н 22 О 11 , состоящий из двух равный частей моносахаридов: d-глюкозы и d-фруктозы . Эти моносахариды соединяются друг с другом глюкозидными группами: глюкоза в a -конфигурации и фруктоза в b -конфигурации. В молекуле сахарозы глюкоза находится в форме пиранозы (кольцо пирана), а фруктоза - в фуранозидной форме (кольцо фурана). Таким образом, сахароза - это a -d-глюкопиранозил- b -d-фруктофуранозид.

Молекулярная масса сахарозы - 342,296. Молекула сахарозы содержит 42,11% углерода, 6,43 % водорода и 51,46 % кислорода.

Сахароза является кристаллическим веществом, молекулярное строение которого имеет закономерную для него специальную решетку.

Нормальный, выращенный в чистом растворе кристалл сахарозы имеет сложную многогранную (15 и более граней) форму.

Известны 15 видов кристаллов сахарозы, часто наблюдаются двойниковые кристаллы, форма кристаллов зависит от условий процесса кристаллизации, примесей в исходном растворе и степени пересыщения сахарозой этого раствора.

Плотность кристаллов сахарозы без включений при 20 о С - 1,5915 г/см 3 , удельный объем - 0,628 см 3 /г.

Кристаллы размером 1,5-2,5 мм относятся к крупной фракции, размером 0,5-1,5 мм - к средней, размером до 0,5 мм - к мелкой.

В 1 г содержится примерно следующее количество кристаллов сахарозы:

Чистые кристаллы сахарозы прозрачны и бесцветны. При раздавливании кристаллы сахарозы дают очень яркие вспышки кристаллолюминисценции. Кристалл сахарозы - изолятор. Объемное термическое расширение сахарозы составляет 0,00011 % на 1°С.

Чистые растворы сахарозы не электропроводны и химически нейтральны, т.е. их рН=7.

В водных растворах сахароза под влиянием кислот, присоединяя воду, расщепляется (процесс инверсии) на свои составные части - глюкозу и фруктозу.

Под действием некоторых ферментов, дрожжей, плесени и бактерий сахароза также разлагается на глюкозу и фруктозу.

Растворимость сахарозы в чистой воде значительна и быстро растет с повышением температуры. В этиловом и метиловом спиртах сахароза практически не растворяется.

Сахароза плавится при температуре 186-188°С, происходит т.н. "кара-мелизация" сахарозы, или образование сложных, окрашенных в бурый цвет горького вкуса веществ.

Химически чистую сахарозу для научных исследований готовят, растворяя в дистиллированной воде лучший рафинированный товарный сахар с последующим осаждением безводным этиловым спиртом, причем этот процесс повторяют несколько раз.

Химические формулы распространённых в быту веществ полезно знать не только как часть школьного курса химии, но и просто для общей эрудиции. Формулу воды или поваренной соли знают практически все, однако насчёт спирта, сахара или уксуса — немногие смогут сразу попасть в точку. Давайте пойдём от простого к сложному.

Какова формула воды?

Эту жидкость, благодаря которой на планете Земля появилась удивительная живая природа, знают и пьют все. Более того, она составляет около 70% нашего с вами тела. Вода является простейшим соединением атома кислорода с двумя атомами водорода.

Химическая формула воды: H 2 O

Какова формула поваренной соли?

Поваренная соль является не только незаменимым кулинарным блюдом, но и одной из главных составляющих морской соли, запасы которой в Мировом Океане составляют миллионы тонн. Формула поваренной соли проста и легка для запоминания: 1 атом натрия и 1 атом хлора.

Химическая формула поваренной соли: NaCl

Какова формула сахара?

Сахар — белый кристаллический порошок, без которого ни один сладкоежка в мире не сможет прожить и дня. Сахар является сложным органическим соединением, формулу которого сразу не запомнишь: 12 атомов углерода, 22 атома водорода и 11 атомов кислорода образуют сладкую и сложную структуру.

Химическая формула сахара: C 12 H 22 O 11

Какова формула уксуса?

Уксус — раствор уксусной кислоты, который используют в пищу, а также для очистки металлов от налёта. Молекула уксусной кислоты имеет сложную структуру, состоящую из двух атомов углерода, к одному из которых крепятся три атома водорода, а к другому — два атома кислорода, один из которых прихватил себе ещё один водород.

Химическая формула уксусной кислоты: CH 3 COOH

Какова формула спирта?

Начнём с того, что спирты бывают разные. Тот спирт, что используется для приготовления вин, водки и коньяков, называется по-научному этанол. Помимо этанола есть ещё куча спиртов, которые используются в медицине, автомобилестроении и авиации.

Химическая формула этанола: C 2 H 5 OH

Какова формула пищевой соды?

Пищевая сода называется по-научному гидрокарбонатом натрия. Из этого названия любой начинающий химик поймёт, что в молекуле соды есть натрий, углерод, кислород и водород.

Химическая формула пищевой соды: NaHCO 3

Сегодня 24 февраля 2019 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова формула сахара, соли, воды, спирта, уксуса и прочих веществ друзьям в социальных сетях:

Сахароза C12H22O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар - дисахарид, состоящий из двух моносахаридов - α-глюкозы и β-фруктозы.

Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.

Бесцветные моноклинные кристаллы. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

Молекулярная масса 342,3 а.е.м.

Вкус сладковатый. Растворимость (грамм на 100 грамм): в воде 179 (0°C) и 487 (100°C), в этаноле 0,9 (20°C). Малорастворима в метаноле. Не растворима в диэтиловом эфире

Плотность 1,5879 г/см3

При охлаждении жидким воздухом, после освещения ярким светом кристаллы сахарозы фосфоресцируют

Не проявляет восстанавливающих свойств - не реагирует с реактивом Толленса и реактивом Фелинга.

Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу

Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор, то появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза:

С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6

Природные и антропогенные источники

Содержится в сахарном тростнике, сахарной свекле (до 28% сухого вещества), соках растений и плодах (например, берёзы, клёна, дыни и моркови). Источник получения сахарозы - из свеклы или из тростника определяют по соотношению содержания стабильных изотопов углерода 12C и 13C. Сахарная свекла имеет C3-механизм усвоения углекислого газа (через фосфоглицериновую кислоту) и предпочтительно поглощает изотоп 12C; сахарный тростник имеет C4-механизм поглощения углекислого газа (через щавелевоуксусную кислоту) и предпочтительно поглощает изотоп 13C.




Химические свойства сахарозы

В растворе сахарозы не происходит раскрытие циклов, поэтому она не обладает свойствами альдегидов.

1) Гидролиз (в кислотной среде):

C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 + C 6 H 12 O 6 .

сахароза глюкоза фруктоза

2) Являясь многоатомным спиртом, сахароза дает синее окрашивание раствора при реакции с Cu(OH) 2 .

3) Взаимодействие с гидроксидом кальция с образованием сахарата кальция.

4) Сахароза не реагирует с аммиачным раствором оксида серебра, поэтому ее называют невосстанавливающим дисахаридом.

Полисахариды.

Полисахариды – высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями.

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов (C 6 H 10 O 5) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

С точки зрения общих принципов строения полисахариды можно разделить на две группы, а именно: на гомополисахариды, состоящие из моносахаридных единиц только одного типа, и гетерополисахариды, для которых характерно наличие двух или более типов мономерных звеньев.

С точки зрения функционального назначения полисахариды также могут быть разделены на две группы: структурные и резервные полисахариды. Важными структурными полисахаридами являются целлюлоза и хитин(у растений и животных, а также у грибов, соответственно), а главные резервные полисахариды - гликоген и крахмал (у животных, а также у грибов, и растений соответственно). Здесь будут рассмотрены только гомополисахариды.

Целлюлоза (клетчатка) − наиболее широко распространенный структурный полисахарид растительного мира.

Главная составная часть растительной клетки, синтезируется в растениях (в древесине до 60% целлюлозы). Целлюлоза обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Чистая целлюлоза – белое волокнистое вещество, без вкуса и запаха, нерастворимое в воде и в других растворителях.

Молекулы целлюлозы имеют линейное строение и большую молекулярную массу, состоят только из неразветвленных молекул в виде нитей, т.к. форма остатков β-глюкозы исключает спирализацию.. Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

Целлюлоза состоит из остатков α,D-глюкопиранозы в их β-пиранозной форме, т. е. в молекуле целлюлозы β-глюкопиранозные мономерные единицы линейно соединены между собой β-1,4-глюкозидными связями:

При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном гидролизе - D-глюкоза. Молекулярная масса целлюлозы 1 000 000−2 000 000. Клетчатка не переваривается ферментами желудочно-кишечного тракта, так как набор этих ферментов желудочно-кишечного тракта человека не содержит β-глюкозидазу. Вместе с тем известно, что присутствие оптимальных количеств клетчатки в пище способствует формированию кала. При полном исключении клетчатки из пищи нарушается формирование каловых масс.

Крахмал − полимер такого же состава, что и целлюлоза, но с элементарным звеном, представляющим собой остаток α-глюкозы:

Молекулы крахмала свернуты в спираль, большая часть молекул разветвлена. Молекулярная масса крахмала меньше молекулярной массы целлюлозы.

Крахмал – это аморфное вещество, белый порошок, состоящий из мелких зерен, не растворимый в холодной воде, но частично растворимое в горячей.

Крахмал представляет собой смесь двух гомополисахаридов: линейного - амилозы и разветвленного - амилопектина, общая формула которых (С 6 Н 10 O 5) n .

При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы, и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина.

Амилоза имеет линейное строение, α, D- глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

(амилопектин)

Как правило, содержание амилозы в крахмале составляет 10-30%, амилопектина - 70-90%. Полисахариды крахмала построены из остатков глюкозы, соединенных в амилозе и в линейных цепях амилопектина α-1,4-глюкозидными связями, а в точках ветвления амилопектина - межцепочечными α-1,6-глюкозидными связями.

В молекуле амилозы связано в среднем около 1000 остатков глюкозы, отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц.

В воде амилоза не дает истинного раствора. Цепочка амилозы в воде образует гидратированные мицеллы. В растворе при добавлении йода амилоза окрашивается в синий цвет. Амилопектин также дает мицеллярные растворы, но форма мицелл несколько иная. Полисахарид амилопектин окрашивается йодом в красно-фиолетовый цвет.

Крахмал имеет молекулярную массу 10 6 -10 7 . При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины, при полном гидролизе - глюкоза. Крахмал является наиболее важным для человека пищевым углеводом. Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например, зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Гликоген − главный резервный полисахарид высших животных и человека, построенный из остатков α-D-глюкозы. Эмпирическая формула гликогена, как и крахмала (С 6 Н 10 O 5) n . Гликоген содержится практически во всех органах и тканях животных и человека; наибольшее количество его находится в печени и мышцах. Молекулярная масса гликогена 10 7 -10 9 и выше. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены α-1,4-глюкозидными связями. В точках ветвления имеются α-1,6-глюкозидные связи. Гликоген по своему строению близок к амилопектину.

В молекуле гликогена различают внутренние ветви - участки полиглюкозидных цепей между точками ветвления, и наружные ветви - участки от периферической точки ветвления до нередуцирующего конца цепи. При гидролизе гликоген, подобно крахмалу, расщепляется с образованием сначала декстринов, затем мальтозы и, наконец, глюкозы.

Хитин − структурный полисахарид низших растений, в особенности грибов, а также беспозвоночных животных (главным образом членистоногих). Хитин состоит из остатков 2-ацетамидо-2-дезокси-D-глюкозы, связанных между собой β-1,4-глюкозидными связями.