С какой целью и как проводится испытание асфальтобетона. Разница между опытом и экспериментом

Каждый раз, когда вы проводите научный эксперимент, следует составлять лабораторный отчет с описанием целей исследования, ожидаемых результатов, последовательности действий и полученных результатов с их объяснением. Зачастую лабораторные отчеты составляют в стандартном формате - сначала приводят аннотацию и введение, затем следует перечисление используемых материалов и экспериментальных методик, описание и обсуждение полученных результатов, а в конце выводы. Такой формат позволяет читателю найти ответы на основные вопросы: с какой целью проводился эксперимент, каких результатов ожидал экспериментатор, как проходил эксперимент, что произошло в процессе эксперимента, и о чем говорят полученные результаты. В данной статье описан стандартный формат лабораторного отчета.

Шаги

Часть 1

Аннотация и введение

    Начните с аннотации. Она представляет собой предельно краткое изложение содержания отчета и обычно содержит не более 200 слов. Аннотация поможет читателю быстро ознакомиться с результатами эксперимента и их значением. Аннотация должна иметь такую же структуру, что и сам отчет. Она позволит читателю быстро ознакомиться с целью, полученными результатами и значением проведенного эксперимента.

    • Цель аннотации заключается в том, чтобы обеспечить читателя краткой информацией об эксперименте, по которой он сможет судить о том, стоит ли изучать весь отчет. Аннотация позволит читателю определить, интересно ли ему данное исследование.
    • Опишите одним предложением цель исследования и его значимость. Затем очень кратко перечислите использованные материалы и методы. Посвятите 1–2 предложения изложению результатов эксперимента. После аннотации можно привести список ключевых слов, которые часто используются в отчете.
  1. Напишите введение. Начните с краткого обзора относящихся к теме литературных источников и экспериментов. Затем подытожьте теоретические основы и текущее состояние дел в данном направлении. Дальше укажите на проблему и вопросы, которым посвящено ваше исследование. Кратко опишите свою работу и то, какие проблемы и вопросы в ней рассматриваются. Наконец, вкратце объясните проведенный вами эксперимент, но не вдавайтесь в детали, которые будут изложены в дальнейшем при описании использованных материалов и методов, а также в ходе анализа полученных результатов.

  2. Решите, какими должны быть ожидаемые результаты. Грамотное и четкое объяснение ожидаемых результатов называется гипотезой. Гипотеза должна быть приведена в последней части введения.

    • Гипотеза научного исследования должна представлять собой краткое заявление, в котором описанная во введении проблема представлена в виде проверяемого тезиса.
    • Гипотезы нужны ученым для того, чтобы правильно планировать и проводить эксперименты.
    • Гипотезу никогда не доказывают, а лишь «проверяют» или «поддерживают» экспериментом.
  3. Корректно сформулируйте гипотезу . Следует начать с общего заявления об ожидаемых результатах и на его основе сформулировать проверяемое утверждение. Затем разверните и конкретизируйте идею. Наконец, более подробно объясните свой замысел и сделайте так, чтобы вашу гипотезу можно было проверить.

    • Например, можно начать с утверждения: «Удобрения влияют на то, насколько высоким вырастет растение». Эту идею можно сформулировать в виде четкой гипотезы: «Если растения удобрять, они вырастают быстрее и выше». Чтобы сделать данную гипотезу проверяемой, можно добавить экспериментальные подробности: «Те растения, которые удобряют раствором с 1 миллилитром удобрения, растут быстрее, чем аналогичные растения без удобрения, поскольку получают больше питательных веществ».

    Часть 2

    Экспериментальная методика
    1. Посвятите отдельный раздел объяснению эксперимента. Этот раздел часто называется «Материалы и методы» или «Экспериментальная процедура». Его цель заключается в том, чтобы сообщить читателю, как именно вы проводили свой эксперимент. Опишите все использованные материалы и конкретные методы, которые вы применяли в своей работе.

      • В этом разделе следует дать ясную и исчерпывающую информацию об экспериментальной процедуре, чтобы на ее основании другие в случае необходимости могли повторить ваш эксперимент.
      • Данный раздел является чрезвычайно важным документальным описанием ваших методов анализа.
    2. Опишите все материалы, которые необходимы для проведения эксперимента. Это может быть простое перечисление или несколько абзацев текста. Опишите использованное в работе экспериментальное оборудование, его тип и марку. Часто бывает полезно привести схему той или иной установки. Помимо прочего, объясните, что вы использовали в качестве исследуемых материалов или объектов.

      • Например, если вы проверяете влияние удобрений на рост растений, следует указать марку использованного удобрения, вид изученных растений и марку семян.
      • Не забудьте указать количество всех использованных в эксперименте объектов.
    3. Подробно опишите экспериментальную процедуру. Последовательно и подробно изложите все этапы эксперимента. Шаг за шагом опишите, как именно вы проводили эксперимент. Включите описание всех проведенных измерений и того, как и когда они осуществлялись. Если вы предпринимали меры для того, чтобы увеличить точность и достоверность эксперимента, опишите их. Например, это могли быть какие-то дополнительные способы контроля, ограничения или меры предосторожности.

      • Помните о том, что все эксперименты должны включать заданные параметры и переменные величины. Опишите их в данном разделе.
      • Если вы использовали уже описанный в литературе экспериментальный метод, не забудьте привести ссылку на оригинальный источник.
      • Помните, что цель данного раздела заключается в том, чтобы дать читателю полную и точную информацию о том, как вы проводили свой эксперимент. Не опускайте деталей.

    Часть 3

    Результаты
    1. Посвятите отдельный раздел изложению полученных результатов. Это основная часть вашего отчета. В данном разделе следует описать результаты, полученные качественными и количественными методами анализа. Если вы приводите графики, диаграммы и другие рисунки, не забудьте описать их в тексте. Все рисунки должны иметь свой номер и подпись. Если вы проводили статистические исследования, приведите их результаты.

      • Например, если вы проверяли влияние удобрений на рост растений, желательно привести график, на котором сопоставляются средние скорости роста растений с удобрением и без него.
      • Следует также описать полученные результаты в тексте, например: «Растения, которые поливали раствором с 1 миллилитром удобрения, в среднем вырастали на 4 сантиметра выше, чем те, которым не давали удобрение».
      • Последовательно описывайте полученные результаты. Расскажите читателю, почему тот или иной результат важен для решения данной проблемы. Это позволит ему без особых усилий следить за вашей логикой изложения.
      • Сравните полученные результаты с первоначальной гипотезой. Напишите, подтвердил или нет эксперимент вашу гипотезу.
      • Количественные данные выражаются в числовой форме, например в виде процентов или статистических данных. Качественные данные отвечают на более широкие вопросы и выражаются в виде суждений авторов исследования.

Дисциплина «Банковское дело»

Банки выполняют операции с наличными деньгами в соответствии с утвержденным ЦБ на основании их проектов кассовым планом. Кассовое планирование банка базируется на кассовых

заявках клиентов.

Кассовое планирование имеет своей целью:

а) определить движение наличности через кассу предприятия;

б) установить расход наличности на текущие финансовые операции, в том числе на выдачу зарплаты;

в) произвести расчёт потребности в наличности на выплату заработной платы с учетом удержаний и перечислений и осуществить своевременно заказ её в банке;

г) определить лимит остающейся наличности в кассе предприятия и порядок инкассации наличности банком.

Прогноз движения денежной наличности - подробная смета помесячной денежной выручки и расходов компании. В итоге может быть получен показатель движения денежной наличности за месяц и" совокупное его значение за истекший период.

81 Классификация конфликтов. Примеры методов разрешения конфликтов .

Дисциплина «Менеджмент»

Конфликт (лат. conflictus) - столкновение противоположно направленных, несовместимых друг с другом тенденций в сознании отдельно взятого индивида, в межличностных взаимодействиях или межличностных отношениях индивидов или групп людей, связанное с острыми отрицательными эмоциональными переживаниями.

Существуют многочисленные классификации конфликтов .

По направленности конфликты делятся на «горизонтальные» и «вертикальные», а также «смешанные». К горизонтальным относят такие конфликты, в которых не замешаны лица, находящиеся в подчинении друг у друга. К вертикальным конфликтам относят те, в которых участвуют лица, находящиеся в подчинении один у другого. В смешанных конфликтах представлены и вертикальные, и горизонтальные составляющие.

По значению для группы и организации конфликты делятся на конструктивные (созидательные, позитивные) и деструктивные (разрушительные, негативные). Первые приносят делу пользу, вторые - вред. От первых уходить нельзя, от вторых - нужно.

По характеру причин конфликты можно разделить на объективные и субъективные. Первые порождены объективными причинами, вторые - субъективными, личностными. Объективный конфликт чаще разрешается конструктивно, субъективный, напротив, как правило, разрешается деструктивно .

Классификация конфликтов по типу социальной формализации : официальные и неофициальные (формальные и неформальные). Эти конфликты, как правило, связаны с организационной структурой, ее особенностями и могут быть как «горизонтальными», так и «вертикальными».

По своему социально-психологическому эффекту конфликты делятся на две группы:

развивающие, утверждающие, активизирующие каждую из конфликтующих личностей и группу в целом;

способствующие самоутверждению или развитию одной из конфликтующих личностей или группы в целом и подавлению, ограничению другой личности или группы лиц.

По объему социального взаимодействия конфликты классифицируют на межгрупповые, внутригрупповые, межличностные и внутриличностные.

Межгрупповые конфликты предполагают, что сторонами конфликта являются социальные группы, преследующие несовместимые цели и своими практическими действиями препятствующие друг другу. Это может быть конфликт между представителями различных социальных категорий (например, в организации: рабочие и ИТР, линейный и офисный персонал, профсоюз и администрация и т. д.).

Внутригрупповой конфликт включает, как правило, саморегуляционные механизмы. Если групповая саморегуляция не срабатывает, а конфликт развивается медленно, то конфликтность в группе становится нормой отношений. Если же конфликт развивается быстро и нет саморегуляции, то наступает деструкция. Если конфликтная ситуация развивается по деструктивному типу, то возможен ряд дисфункциональных последствий. Это могут быть общая неудовлетворенность, плохое состояние духа, уменьшение сотрудничества, сильная преданность своей группе при большой непродуктивной конкуренции с другими группами.

Внутриличностный конфликт - это, как правило, конфликт мотивации, чувств, потребностей, интересов и поведения у одного и того же человека.

Межличностный конфликт - это наиболее часто возникающий конфликт. Возникновение межличностных конфликтов определяется ситуацией, личностными особенностями людей, отношением личности к ситуации и психологическими особенностями межличностных отношений. Возникновение и развитие межличностного конфликта во многом обусловлены демографическими и индивидуально-психологическими характеристиками. Для женщин более характерны конфликты, связанные с личными проблемами, для мужчин - с профессиональной деятельностью.

Уклонение

Этот стиль подразумевает, что человек старается уйти от конфликта. Его позиция - не попадать в ситуации, которые провоцируют возникновение противоречий, не вступать в обсуждение вопросов, чреватых разногласиями. Тогда не придётся приходить в возбуждённое состояние, пусть даже и занимаясь решением проблемы.

Сглаживание.

При таком стиле человек убежден, что не стоит сердиться, потому что «мы все- одна счастливая команда, и не следует раскачивать лодку». Такой «сглаживатель» старается не выпустить наружу признаки конфликта, апеллируя к потребности в солидарности. Но при этом можно забыть о проблеме, лежащей в основе конфликта. В результате может наступить мир и покой, но проблема останется, что в конечном итоге произойдет «взрыв».

Принуждение.

В рамках этого стиля превалируют попытки заставить принять свою точку зрения любой ценой. Тот, кто пытается это сделать не интересуется мнением других, обычно ведет себя агрессивно, для влияния на других пользуется властью путем принуждения. Такой стиль может быть эффективен там, где руководитель имеет большую власть над подчинёнными, но он может подавить инициативу подчинённых, создаёт большую вероятность того, что будет принято неверное решение, так как представлена только одна точка зрения. Он может вызвать возмущение, особенно у более молодого и более образованного персонала.

Компромисс.

Этот стиль характеризуется принятием точки зрения другой стороны, но лишь до некоторой степени. Способность к компромиссу высоко ценится в управленческих ситуациях, так как это сводит к минимуму недоброжелательность, что часто даёт возможность быстро разрешить конфликт к удовлетворению обеих сторон. Однако, использование компромисса на ранней стадии конфликта, возникшего по важной проблеме может сократить время поиска альтернатив.

Решение проблемы.

Данный стиль - признание различия во мнениях и готовность ознакомиться с иными точками зрения, чтобы понять причины конфликта и найти курс действий, приемлемый для всех сторон. Тот, кто использует такой стиль не старается добиться своей цели за счет других, а скорее ищет наилучший вариант решения. Данный стиль является наиболее эффективным в решении проблем организации.

Образование

Пилотажное исследование - это что такое? С какой целью проводится пилотажное исследование?

12 ноября 2016

Что собой представляет пилотажное исследование? С какой целью оно проводится? На выполнение каких задач направлено?

Общая информация

Для начала давайте определимся, что же собой являет пилотажное исследование. Это обозначение используется для того, чтобы именовать пробные или небольшие поисковые (разведывательные) проверки существующего положения дел. Так, если нужно уточнить проблемы, более корректно поставить задачу и выдвинуть обоснованные гипотезы, то пилотажное исследование является наилучшим вариантом для этого. Особенная потребность в нём может быть в тех случаях, когда отсутствует литература по интересующей теме. Тогда пилотажное исследование проводится с целью восполнения информационного пробела.

Что оно собой представляет?

Пилотажное исследование - это в социологии вид анализа, при котором значительно ограничивается круг задач, количество опрошенных людей невелико, данные нерепрезентативные, а инструментарий и программа чрезвычайно упрощены. Из-за этого исследователь получает только примерную информацию о том, чем же является объект исследований. Эти знания используются для общей ориентации. Главный лозунг пилотажных исследований - дешево, быстро и приблизительно. Поэтому они применяются в тех случаях, когда проблема или вообще не изучена, или же познания о ней весьма жалки.

Видео по теме

Как проводится?

Итак, нам уже известно, что пилотажное исследование - это социологическое исследование. Но как оно проводится? Здесь существует большое количество различных вариантов. Наиболее оптимальным считается неформализованное интервью с потенциальными респондентами. Но, увы, субъективность людей может повлиять на их ответы. Чтобы подкорректировать данные используют наблюдение со стороны специалистов. Для этого может формировать фокус-группа. Но тогда следует предельно сконцентрироваться на чем-то конкретном. Весьма популярным является и опрос экспертов. К ним относят специалистов или же простых людей, но которые обязательно должны иметь определённое отношении к проблемной области, что интересует исследователя. В качестве дополнения можно изучать документацию и статистические данные, где имеются нужные сведения для подтверждения/опровержения гипотезы или решения задачи. Весьма популярными являются и экспресс-опросы. Правда они, как правило, несмотря на свою грамотность, не ставят перед собой решение глубоких научных задач и развитие фундаментальной науки. С их помощью узнаётся сиюминутная важность чего-то для общества. При этом не суть важно, что выступает в качестве объекта: выборы Трампа президентом США, запрещение абортов или же что-то ещё. Как бы там ни было - получение данных осуществляется с целью наложить их на более масштабные процессы.

О надежности

Насколько можно доверять полученной информации? Учитывая, что пилотажное исследование - это пробное исследование, уже сам этот факт подразумевает высокую долю рисков. А если оно ещё проводится и не специалистами, а группой любителей (в качестве которых может выступать отдел кадров, журнал, кружок, хозяин веб-сайта), то в таком случае хотя и имеется свежая и нужная информация, она, тем не менее, является нерепрезентативной, и её надёжность весьма сомнительна. На первый взгляд, она может быть вполне надёжной. Но если подойти с научной точки зрения - тут-то и откроются её изъяны. Поэтому использовать пилотажные исследования имеет смысл только в том случае, когда не выдвигаются строгие требования относительно надежности. Первоначально следует затронуть выборку. Четких методических требований здесь нет. Как правило, полагают, что опрос 3-х десятков респондентов позволит получить требуемую информацию. Но при этом следует позаботиться о том, чтобы среди них были представители всех категорий людей, которые подпадают под исследование. При этом нужно стремиться к максимальному разнообразию. Кроме этого, следует позаботится о том, чтобы среди респондентов были люди, для которых тема представляет хоть какое-то значение. В качестве отборочных признаков выступает пол, образование, возраст, стаж работы и прочие подобные критерии.

Важность пилотажных исследований

В целом и общем этот аспект был рассмотрен ранее. Сейчас же давайте остановимся на этом по подробнее. Из самого названия понятно, что пилот проводится до начала основного исследования. Он необходим для того, чтобы проверить обоснованность задач и гипотез. Хотя также может быть использован и для методической отработки инструментария. В случае необходимости пилотное исследование помогает внести коррективы в модель, которые улучшат её работу, позволять уточнить характеристики, предмет, обосновать финансовые траты и сроки завершения. Ведь если будет проводиться полноценный мониторинг настроений в обществе и где-то закрадётся ошибка, то её наличие будет чревато значительными неприятностями. Такой подход оказывает благотворное влияние в вопросе экономии ресурсов. Для проверки эффективности и целесообразности использования имеющегося инструментария могут быть проведены также пилотажные исследования. Они же подходят и в качестве генеральной репетиции главного исследования. В таком случае проверяется успешность проведения первого этапа и оцениваются результаты. Также при исследовании нового объекта это позволяет наработать методический материал. Проверяются одновременно и организационные условия: как относятся респонденты к проводимому опросу, есть ли все нужные документы и оценивается качество материала. При этом регистрируются все затруднения, которые возникают в ходе дела.

Заключение

Само пилотажное исследование проходит, как правило, в группах. Вопрос только в том, насколько большими они являются. Существует два наиболее популярных варианта. Первый предусматривает приглашение всех респондентов в отдельную комнату, где они заполняют анкеты. Перед этим людей информируют про пилотаж, сообщают и объясняют его задачи и цели, инспектируют нюансы заполнения анкеты и просят высказывать все замечания. Второй вариант опирается на небольшие группы, которые состоят из 3-4 человек. При этом анкеты обсуждаются по мере их заполнения. Наибольший интерес для исследователей представляет качество задаваемых вопросов. В таких случаях наибольший интерес предоставляют, как правило, методические цели.

Для измерения потерь и тока холостого хода трансформатора проводят опыт холостого хода. Измерение потерь х.х. позволяет про­верить состояние магнитопровода. При его повреждении (нарушена изоляция между листами) потери х.х. увеличиваются. Резкое увеличе­ние тока х.х. и потерь х.х. являются показателем наличия замыкания между витками одной из обмоток, местного нагрева и повреждения обмоток.

Опыт х.х. проводится после испытания электрической прочности изо­ляции. Это делается с той целью, чтобы обнаружить возможные дефекты после данного испытания.

При опыте х.х к обмотке низкого напряжения НН при разомкну­той обмотке ВН подводят номинальное напряжение.

ВНИМАНИЕ ! На трансформаторе с выводов ВН необходимо снять концы кабеля. Для снятия характеристики х.х. не­обходимо собрать схему, показанную на рисунке 3.4.

Рисунок 3.4- Схема для снятия характеристики холостого хода: 1- индукционный регулятор; 2 -ком­плект приборов K-50 или К-505; 3 - испытуемый трансформатор.

Подавая на обмотку НН напряжение в пределах от 0,5 до 1,1 U н, снять замеры величин напряжения, тока и потерь для каждой фазы. U а измерять комплектом К-505, Измерительный комплект К-505 измеряет фаз­ное напряжение, фазный ток и мощность фазы,a U ав, U вс, U ас вольтметром РV. Данные измерений занести в таблицу 3.6.

Таблица 3.6 Опыт холостого хода

По данным измерений определяют расчетные величины U хх, Р хх, I xx

, (3.3)

где U ав, U вс, U са - линейные напряжения на низкой стороне трансформатора.

, (3.4)

где I a , I в, I с – фазные токи.

, (3.5)

где - номинальное значение тока той обмотки, к которой подводится напряжение.

Для трехфазного трансформатора

, (3.7)

где Р ст. - потери в стали;

R ф - фазное сопротивление обмотки постоянному току.

Мощность Р хх почти целиком расходуется на покрытие потерь в стали сердечника трансформатора Р ст , так как при х.х. потери в обмотках ничтожно малы по сравнению с потерями в стали, то можно принять Р ст » Р хх .

На основании измерений необходимо построить характеристики х.х. трансформатора I хх, P xx =f(U xx) . Для вновь вводимых в эксплуатацию трансформаторов значения Р хх не должны отличаться от заводских данных более, чем на 10% (Р хх = 340 Вт для трансформатора TM-63/10).

7 Опыт короткого замыкания.

Для измерения потерь и напряжения короткого замыкания проводят опыт короткого замыкания (к.з.). При опыте к.з. проверяют правильность соединения обмоток трансформатора и состояние контактных соединений.

Опыт к.з. проводится для трансформатора на номинальной ступеню регулирования напряжения по схеме, по­казанной на рисунке 3.5.

Плавно поднимая напряжение, устанавливают в обмотке НН пони­женный по сравнению с номинальным ток в пределах 20 % I н, т.е. I к =20 А.

ВНИМАНИЕ! Измерения производить как можно быстрее во избежание нагрева обмоток.

Таблица 3.7- Опыт короткого замыкания

По данным измерений определяют расчетные величины и приводят значения напряжения и потерь к действительному напряжению к.з. по формулам:

, (3.9)

где I A , I B , I C – фазные токи при опыте.

, (3.10)

где U AB , U BC , U AC - линейные напряжения на высокой стороне трансформатора, измеренные при опыте.

, (3.11)

где Р а, Р в, Р с - фазные мощности измеренные при опыте к.з.

, (3.12)

где U К % - напряжение короткого замыкания в процентах от номинального;

U Н - номинальное значение той обмотки, к которой подводится напряжение.

I Н - номинальное значение тока той обмотки, к которой подводится напряжение.

Мощность, подведенная к трансформатору в режиме короткого замыкания при номинальном напряжении:

, (3.13)

Согласно каталожных данных Р КН =1290 Вт для трансформатора TM-63/10. Потери короткого замыкания трансформаторов состоят из суммы потерь в обмотках åI 2 R, (R – активное сопротивление фазы обмотки трансформатора) и добавочных потерь Р доб. от про­хождения магнитных потоков рассеяния через стенки бака, металличе­ские детали крепления магнитопровода и проводники самих обмоток, а также потерь в магнитопроводе от намагничивания. Потерями от намагничивания пренебрегают ввиду их малой величины (менее со­тых долей процента). Тогда Р доб. = Р к - åI 2 R .

Полученные результаты расчетов следует привести к номинальной температуре обмотки 75° С (согласно ГОСТ II677-65) по форму­лам:

, (3.14)

где t изм - температура, при которой проводился опыт, 0 С;

Р н - номинальная мощность трансформатора (при соsj=1, Р н =соsj ×S=63 кВт).

, Вт; (3.15)

На основании измерений необходимо построить характеристики короткого замыкания. I k , P k =f(U k).

8 При измерении сопротивления обмоток трансформатора постоян­ному току могут выявиться следующие характерные дефекты:

а) недоброкачественная пайка и плохие контакты в обмотке и в присоединении вводов;

б) обрыв одного или нескольких параллельных проводников.

Измерение активного сопротивления обмоток в данном случае производится мостовым методом или методом амперметра и вольтметра. Измерение производится на всех ответвлениях и на всех фазах. Данные измерения следует занести в таблицу 3.8.

Таблица 3.8- Сопротивления обмоток трансформатора постоянному току

После проведения всех измерений составляется сводная таблица 3.9 результатов испытаний и дается заключение о техниче­ском состоянии трансформатора и пригодности его к эксплуатации.

Таблица 3.9- Сводная таблица результатов испытаний, приведенных к нормальным условиям (75° С)

Примечание:

Заключение:

Содержание отчета. В отчете привести цель работы, записать паспортные данные трансформатора, дать краткое описание контрольных испытаний трансформаторов, вычертить схемы для испытаний и измерений, представить таблицы с опытными и расчет­ными данными и дать их анализ, вычертить характеристики х.х., харак­теристики короткого замыкания, сделать заключение о пригодности трансформатора к эксплуатации.

Контрольные вопросы.

1 С какой целью проводится заземление обмоток трансформатора пе­ред началом измерения сопротивления изоляции?

2 Назовите основные характеристики изоляции трансформатора.

3 К каким последствиям приводит уменьшение сопротивления изоляции обмотки трансформатора?

4 Как изменяется коэффициент абсорбции в зависимости от степени увлажнения изоляции и чем это объясняется?

5 Как измерить сопротивление изоляции обмоток силовых двухобмо­точных трансформаторов?

6 С какой целью измеряется коэффициент трансформации трансформа­тора?

7 Какие методы проверки группы соединения обмоток трансформаторов исполь­зуются на практике? Почему метод двух вольтметров является наи­более распространенным?

8 При измерении коэффициента трансформации получены следующие дан­ные: К ав =25, К вс =25, К ас =30 .Определить неисправность в трансфор­маторе.

9 Как и с какой целью проводится испытание электрической прочности главной изоляции обмоток трансформатора?

10 С какой целью измеряют сопротивление обмоток трансформатора постоянному току и какими методами?

11 С какой целью проводится опыт холостого хода и почему он прово­дится после испытания электрической прочности изоляции?

12 С какой целью и как проводится опыт короткого замыкания?

13 Какие параметры трансформатора определяются из опытов холосто­го хода и короткого замыкания?


ЛАБОРАТОРНАЯ РАБОТА №4

ДЕФЕКТАЦИЯ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

С КОРОТКОЗАМКНУТЫМ И ФАЗНЫМ РОТОРОМ

ПРИ РЕМОНТЕ

Цель работы: изучить основные неисправности асинхронных элек­тродвигателей и причины их возникновения, освоить методику обна­ружения неисправностей асинхронных электродвигателей.

Программа работы.

1 Провести внешний осмотр электродвигателя и записать паспорт­ные данные.

2 Провести дефектацию электродвигателя до разборки:

Измерить сопротивление обмоток постоянному току;

Измерить сопротивление изоляции обмоток статора относительно корпуса и относительно друг друга;

Проверить вращение ротора и отсутствие видимых повреждений, препятствующих дальнейшему проведению испытаний и проверок.

3 Разобрать электродвигатель.

4 Провести дефектацию электродвигателя в разобранном виде:

Проверить состояние механических деталей и узлов электродвигателя;

Измерить величину воздушного зазора между статором и ротором;

Проверить отсутствие короткозамкнутых витков (витковое замы­кание), обрыв в обмотке;

Определить места повреждения обмоток статора;

Определить, записать обмоточные данные и вычертить схему об­мотки;

Проверить состояние активной стали статора;

Проверить беличью клетку ротора на отсутствие обрывов в стержнях и кольцах.

Если имеется электродвигатель с фазным ротором, то дефектацию обмотки ротора проводят аналогично дефектации обмотки статора. Дополни­тельно проводят испытание прочности изоляции контактных колец и проверяют состояние активной стали ротора;

Все обнаруженные неисправности механических деталей, обмоток ротора и статора, данные электродвигателя занести в дефектовочную ведомость или технологическую карту ремонта.

1 Асинхронные электродвигатели, поступившие в ремонт, тщатель­но осматривают, а при необходимости испытывают и разбирают с це­лью полного выявления причин, характера и масштабов повреждения. Осмотр электродвигателя, ознакомление с объемом и характером пре­дыдущих ремонтов и эксплуатационными журналами, а также проведе­ние испытаний позволяют оценить состояние всех сборочных единиц и деталей электродвигателя и определить объемы и сроки ремонта, составить техническую документацию по ремонту.

Электродвигатели повреждаются чаще всего из-за недопустимо длительной работы без ремонта, плохого эксплуатационного обслужи­вания или нарушения режима работы, на который они рассчитаны.

Повреждения бывают механические и электриче­ские.

К механическим повреждениям относят: выплавку баббита в под­шипниках скольжения, разрушение сепаратора, кольца, шарика или ролика в подшипниках качения; деформацию или поломку вала ротора; ослабление крепления сердечника статора к станине, разрыв или сползание проволочных бандажей роторов; ослабление прессовки сер­дечника ротора и другие.

Электрическими повреждениями являются: обрыв проводников в обмотке, замыкание между витками обмотки, нарушение контактов и разрушение соединений, выполненных пайкой или сваркой, пробой изоляции на кор­пус, недопустимое снижение сопротивления изоляции вслед­ствие ее старения, разрушения или увлажнения и др.

Краткий перечень наиболее распространенных неисправностей и возможных причин их возникновения в асинхронных машинах приведен в таблице 4.1.

Неисправности и повреждения электрических двигателей не всегда удается обнаружить путем внешнего осмотра, так как некоторые из них (витковые замыкания в обмотках статоров, пробой изоляции на корпус, нарушение пайки в обмотках и др.) носят скрытый характер и могут быть определены только после соответствующих испытаний и измерений.

Таблица 4.1- Неисправности асинхронных машин и возможные причины их возникновения

2 Дефектация электродвигателя до разборки.

В число предремонтных операций по выявлению неисправностей электрических двигателей входят: измерение сопротивления изоляции обмоток, проверка целостности обмоток, испытание элек­трической прочности изоляции, проверка на холостом ходу подшипников, величины осевого разбега ротора, определение состояния крепежных деталей, отсутствие повреждений (трещин, сколов) у отдельных деталей электродвигателя:

а) измерение сопротивления обмоток постоянному току произво­дится с целью проверки отсутствия разрывов в обмотке, например из-за нарушения целостности мест соединений в результате некаче­ственной пайки. Измерение сопротивления производится с помощью моста постоянного тока УМВ, Р353 и другими с классом точности не ниже 0,5. Измеренные сопротивления обмоток не должны отличаться друг от друга более, чем на 2%;

б ) измерение сопротивления изоляции обмоток электродвигателя осуществляется согласно методики, изложенной в общих указаниях (стр. 8-9).

в) ротор электродвигателя поворачивают для проверки его сво­бодного вращения и наличия выбега. Для малых машин эту операцию осуществляют вручную. Такая проверка обязательна перед первым пуском машины или после длительной ее стоянки в условиях, когда в машину могли попасть посторонние предметы

3 Разборку электродвигателя производят с помощью слесарных инструментов.

4. Дефектацию электродвигателя в разобранном виде осуществляют в следующем порядке:

4.1 Определяют состояние механических деталей и отдельных узлов внешним осмотром.

4.2 Проверяют величину воздушного зазора набором щупов не ме­нее чем в четырех точках, поворачивая ротор по часовой стрелке на угол 90°. Среднеарифметическое значение результатов измерений сравнивают с допустимыми значениями (таблица 4.2). Отклонение не должно превышать ±10%.

Таблица 4.2- Нормальные значения воздушных зазоров

асинхронных двигателей

4.3 Определяют повреждения изоляции в электродвигателе, которые приводят к коротким замыканиям.

В зависимости от вида повреждений изоляции возможны следующие замыкания:

Между витками одной катушки в пазу или лобовых частях (витковое замыкание) при повреждении межвитковой изоляции;

Между катушками или катушечными группами одной фазы при повреждении межсекционной изоляции;

Между катушками разных фаз при повреждении межфазовой изоляции;

Замыкание на корпус при повреждении пазовой изоляции.

Пропуская переменный ток пониженного напряжения через отдель­ные фазы обмотки, можно определить место виткового замыкания. Короткозамкнутые витки при включении фазы под напряжение являются как бы вторичной обмоткой автотрансформатора, замкнутой накоротко. Через короткозамкнутые витки протекают токи большой величины, кото­рые нагревают лобовую часть обмотки. По местному нагреву опреде­ляется место виткового замыкания.

Замкнутый виток легко определяется с помощью подковообразного электромагнита.

Рисунок 4.1- Нахождение замкнутого витка с помощью электро­магнита и стальной пластинки, где обозначено: а) замыкания витков нет; б) замыкание витков есть; 1 - проводник обмотки; 2 –электромагнит; 3 - стальная пластина; Ф - магнитный поток магнита; Ф пр - магнитный поток короткозамкнутого проводника с током.

Для нахождения короткозамкнутых витков в секциях обмоток элект­ромагнит устанавливается параллельно пазам статора. После вклю­чения обмотки электромагнита в электрическую сеть переменного то­ка (220 В при частоте 50 Гц) по обмотке потечет ток, который создаст магнитный поток Ф, замыкающийся через сердечник электромаг­нита и часть магнитопровода статора электродвигателя. Этот переменный магнитный поток будет индуктировать ЭДС в проводниках, охватываемых контуром.

При отсутствии витковых замыканий (рисунок 4.1-а) в обмотке ЭДС не вызывает появления тока (для него нет замкнутой цепи). При наличии короткозамкнутых витков ЭДС вызовет в них появление тока, причем значительной величины из-за малого сопротивления контура. Ток создаст магнитный поток Ф пр вокруг короткозамкнутых витков (рисунок 4.1-б). Последние легко обнаруживаются стальной пластиной, которая притягивается к зубцам статора над данным пазом. На производстве для определения витковых замыканий широко используют также прибор типа ЕЛ-1.

Замыкание на корпус (если мегаомметр показывает ноль) может быть определено с помощью милливольтметра. Этот метод связан с поочередной распайкой обмотки на отдельные катушки и проверкой каждой из них. Напряжение на оба конца поврежденной фазы подается с одного зажима аккумулятора напряжением до 2,5 В, а второй зажим соединяется с корпусом. При измерении напряжения на каждой катушке смена полярности показания прибора говорит о прохождении точки замыкания фазы на корпус. Этот метод из-за трудоемкости работ не всегда приемлем, особенно при большом числе катушек.

Лучше использовать магнитный метод (2), который основан на следующем. От источника пониженного напряжения (U до 36 В) од­нофазный переменный ток подводится к концу (или к началу) неис­правной фазы и через реостат и амперметр к корпусу электродвигате­ля. Так как ток переменный, то вокруг проводников с этим током образуется переменное электромагнитное поле. Поэтому пазы с про­водником, по которым течет ток, легко определяются с помощью тонкой стальной пластинки (щупа), которая слегка дребезжит. Последнее дает возможность выявить секции по которым протекает ток от конца фазной обмотки до места замыкания на корпус. Для проверки и уточ­нения найденного места замыкания обмотки ток подводится теперь к началу неисправной фазы. При однократном замыкании обмотки най­денные места замыканий в первом и во втором случае должны сойтись.

Найденную магнитным методом неисправную катушку отсоединяют от остальной обмотки и мегаомметром проверяют правильность установ­ленного места замыкания на корпус.

Этот же метод может быть применен для нахождения места замыка­ния между фазами.

В этом случае напряжение подается вначале к одним концам зам­кнувшихся фаз, а затем к другим. Это дает возможность выявить замкнувшиеся секции.

Внутренний обрыв одной из фаз.

Если обмотка имеет шесть выводов, то оборванная фаза опреде­ляется с помощью тестера или мегаомметром.

Если обмотка имеет только три вывода, то определяется обор­ванная фаза измерением токов или сопротивлений.

При соединении фаз в звезду, (рисунок4.2) ток оборванной фазы равен нулю, а сопротивление, измеренное относительно выхода оборванной фазы, равно “бесконечности”.

Рисунок 4.2- Определение внутреннего обрыва фазы при соединении фаз в звезду.

При соединении фаз в треугольник токи, подходящие к обор­ванной фазе (рисунок 4.3) будут равны и меньше токов в фазе (необорванной), а сопротивление, измеренное на оборванной фазе (C1-C3) будет вдвое больше, чем другие фазы (С1-С2, С2-СЗ).

Рисунок 4.3 - Определение внутреннего обрыва фазы при соединении фаз в треугольник.

После определения оборванной фазы место обрыва определяют с


помощью вольтметра или контрольной лампы (на 36 В) по схе­мам рисунок 4.4-а и 4.4-б.

Рисунок 4.4 - Определение места обрыва в оборванной фазе:

а) с помощью вольтметра; б) с помощью контрольной лампы.

Измеряют напряжение на концах каждой катушки или катушечной группы. В момент показания вольтметра определяется оборванная катушка (рисунок 4.4а). Касаясь щупом от лампы начала и конца каждой катушки, идя от потенциального конца сети, показа­ние лампы покажет на обрыв (лампа погасла, значит обрыв, если с другой стороны, то наоборот).

Для одного из рассматриваемых асинхронных двигателей (с неисправной катушкой) определить и записать обмоточные данные и вычертить схему обмотки.

Осматривают пакет активной стали статора. Пакет стали не должен иметь смещения, вмятин, ослабления прессовки листов желе­за, распушившихся зубцов, прогара.

Целостность стержней короткозамкнутого ротора определяют методом электромагнита переменного тока. При испытании ротор ус­танавливается на электромагнит, подключаемый к сети переменного тока (рисунок 4.5).


Рисунок 4.5 - Определение оборванного стержня ротора с помощью электромагнита: 1- ротор, 2 - стержни ротора, 3 -электромагнит, 4 - стальная пластинка (ножовочное полотно).

Стальная пластинка, перекрывающая паз с целым стержнем будет притягиваться и дребезжать. Если стержень оборван, пластинка не притягивается или притягивается очень слабо. Место разрыва обнаруживается с помощью листа бумаги с насыпанными на него сталь­ными опилками.

Обнаруженные неисправности механических деталей, обмоток статора и ротора, данные электродвигателей, представленных для дефектации занести в дефектовочную ведомость или техноло­гическую карту ремонта.

ТЕХНОЛОГИЧЕСКАЯ КАРТА №

Заказчик _________________________

I Техническая характеристика

II Обмоточные данные

Примечание_____________________________________________________

III Механическая часть

IV Контроль обмоток

Примечания___________________________________________________

V Стендовые испытания

Начальник ОТК____________________________________________

Содержание отчета. В отчете необходимо привести: цель рабо­ты, основные схемы и данные по выявлению неисправностей электродвигателей, представленных для дефектации, эскизы недостаю­щих и требующих изготовления деталей, заполненную технологиче­скую карту ремонта, развернутую схему обмотки статора дви­гателя, у которого требуется заменить обмотку, заключение о результатах дефектации электродвигателей.

Контрольные вопросы.

1 С какой целью проводится дефектация электродвигателя перед ремонтом?

2 В какой последовательности и как проводится дефектация электродвигателя до разборки?

3 К каким последствиям приводит снижение сопротивления изоляции обмотки статора и каким оно должно быть у двигателей с U < 500 В?

4 Как выявить витковое замыкание в обмотке статора при работающем электродвигателе?

5 В какой последовательности и как проводится дефектация электродвигателя после разборки?

6 Какие основные неисправности имеет обмотка статора и как их определить?

7 При включении электродвигателя с короткозамкнутым ротором в сеть наблюдается повышенный нагрев активной стали статора в режиме холостого хода. Какая неисправность электродвигателя?

8 При работе электродвигателя обмотка статора сильно нагрева­ется. Величина тока по фазам неодинакова. Электродвигатель сильно гудит и развивает пониженный крутящий момент. Какие могут быть неисправности в двигателе?

9 Электродвигатель плохо идет в ход и сильно гудит. Величина тока во всех фазах различна и при холостом ходе двигателя пре­вышает номинальную величину. Какая неисправность в электродвига­теле?

10 Двигатель с короткозамкнутым ротором не достигает нормальной скорости вращения, а "застревает" и начинает устойчиво работать при низкой скорости вращения, которая значительно меньше номинальной. Какая неисправность в электродвигателе?


ЛАБОРАТОРНАЯ РАБОТА № 5

Испытание асинхронного электродвигателя

с фазным ротором после ремонта

Цель работы: освоить методику испытаний электродвигателя с фазным ротором после ремонта.

Программа работы:

1 Осмотреть электродвигатель, проверить затяжку крепежных болтов, вращение ротора, записать паспортные данные.

2 Измерить сопротивление изоляции обмоток статора относи­тельно корпуса и относительно друг друга и сопротивление изоля­ции обмотки ротора относительно корпуса.

3 Выполнить маркировку вы­водных концов на постоянном и переменном токе.

4 Измерить сопротивление обмоток статора и ротора постоян­ному току.

5 Проверить коэффициент трансформации асинхронного электро­двигателя с фазным ротором.

6 Провести опыт холостого хода.

7 Провести испытание межвитковой изоляции.

8 Провести опыт короткого замыкания.

9 Провести испытание электрической прочности изоляции.

1 При внешнем осмотре электродвигателя проверяют затяжку крепежных болтов и вращение ротора. При вращении ротора вручную не должно быть его заеданий и люфта в подшипниках. Записываются паспортные данные электродвигателя.

2 Измерение сопротивления изоляции обмоток электродвигателя осуществляется согласно методики, изложенной в общих указаниях (стр. 8-9). . Данные измерений записать в таблицу 5.1.

Таблица 5.1- Сопротивление изоляции обмоток электродвигателя

3 ГОСТом 183-66 предусмотрены обозначения выводов обмоток электрических машин трехфазного переменного тока (таблица 5.2).

Таблица 5.2 - Обозначение выводов обмоток электрических машин трехфазного переменного тока

Обычно выводы всех фаз обмотки статора присоединяют к зажимам, как указано на рисунке 5.1 а. В нек30,3оторых машинах обмотки статора наглухо соединены в звезду и на доску зажимов выведены только четыре вывода: фазы С1, С2, СЗ и нулевая точка 0.

Если маркировки выводов обмоток статора нет, то предварительно находят парные выводы фазы с помощью контрольной лампы один из выводов фазы принимается за начало обмотки и присоединяется к плюсу источника постоянного тока напряжением 4-6 В; один из выво­дов контрольной лампы присоединяется к минусу источника, а вто­рым выводом лампы отыскивается конец обмотки фазы. Или мегаомметр присоединяют зажимом "Линия" мегаомметра к предполагаемому началу фазы обмотки статора и проводом, присоединенным к зажиму "Земля" мегаомметра отыскивается конец фазы. При этом мегаомметр покажет ноль. На каждый вывод фазы надевают после этого бирку с маркировкой (С1,С2 ...).

Маркировка выводных концов проводится на постоянном или пере­менном токе. При постоянном токе наиболее распространены два варианта (рисунок 5.2)

Маркировку выводов проводят с помощью аккумулятора (U = 4 - 6 В) и милливольтметра (М104).

При первом варианте а) примем С1,С2,СЗ за начала фаз 1,2,3, а С4,С5,С6 - за концы этих фаз. Если начало фазы 1 присоединить к "плюсу" батареи аккумуляторов, а конец к «минусу» (рис.5.2,а), то в момент включения тока в обмотках других фаз (2 и 3) бу­дет индуктироваться ЭДС с полярностью "минус" на началах и " плюс" на концах фаз. Милливольтметр присоединяют к фазе 2, а потом к фазе 3. Если стрелка прибора в обоих случаях отклони­лась вправо, то значит все концы обмоток промаркированы правиль­но.

Рисунок 5.2- Схемы проверки маркировки выводов статора с помощью источника постоянного тока: а) - первый вариант; б) и в)- второй вариант; Н и К - соответственно начала и концы обмоток 1,2,3.

При втором варианте б) и в) две фазы соединяют последователь­но (попарно) между собой и импульсом включают на батарею. К третьей фазе присоединяют милливольтметр. Если первые две фазы соединены одноименными зажимами (рисунок 5.2.б.), милливольтметр ничего не покажет. При соединении фаз разноименными зажимами (рисунок 5.2."в") в момент включения батареи стрелка милливольт­метра отклонится вправо.

При переменном токе и с выведенными шестью концами фаз наиболее распространен индукционный метод маркировки выводов (рисунок 5.3).

Рисунок 5.3 - Схема индукционного метода маркировки выводов статора с помощью источника переменного тока:

Н и К - соответственно начала и концы обмоток 1,2,3;

Т V - трансформатор регулировоч­ный.