Функции и способы задания функций. Способы задания функций

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in . А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Функции могут быть заданы самыми различными способами. Однако, наиболее часто встречаются следующие три способа задания функций: аналитический, табличный и графический.

Аналитический способ задания функции. При аналитическом способе задания функция определяется с помощью аналитического выражения, т. е. с помощью формулы, указывающей, какие действия надо совершить над значением аргумента, чтобы получить соответствующее значение функции.

В п. 2 и 3 мы уже встречались с функциями, заданными с помощью формул, т. е. аналитически. При этом в п. 2 для функции область определения ) была установлена, исходя из геометрических соображений, а для функции область задания была указана в условии. В п. 3 для функции область определения также задавалась по условию. Однако очень часто функция задается только с помощью аналитического выражения (формулы), без каких-либо дополнительных условий. В таких случаях под областью определения функции мы будем понимать совокупность всех тех значений аргумента, для которых это выражение имеет смысл и приводит к действительным значениям функции.

Пример 1. Найти область определения функции

Решение. Функция задана только формулой, ее область определения не указана и никаких дополнительных условий нет. Поэтому под областью определения этой функции мы должны понимать совокупность всех тех значений аргумента для которых выражение имеет действительные значения. Для этого должно быть . Решая это неравенство, приходим к заключению, что областью определения данной функции является сегмент [-1.1].

Пример 2. Найти область определения функции .

Решение. Область определения, очевидно, состоит из двух бесконечных интервалов , так как выражение не и имеет смысла при а при всех остальных значениях определено.

Читатель теперь сам легко увидит, что для функции областью определения будет вся числовая ось, а для функции - бесконечный интервал

Следует обратить внимание на то, что нельзя отождествлять функцию и формулу, с помощью которой задается эта функция. Посредством одной и той же формулы можно задать различные функции. В самом деле, в п. 2 мы рассматривали функцию с областью определения в п. 3 строился график для функции с областью определения . И, наконец, только что мы рассмотрели функцию, заданную только формулой без каких-либо дополнительных условий. Областью определения этой функции является вся числовая ось. Эти три функции различны между собой, так как они имеют разные области определения. Но задаются они с помощью одной и той же формулы.

Возможен и обратный случай, когда одна функция на различных участках ее области определения задается различными формулами. Например, рассмотрим функцию у, определенную для всех неотрицательных значений следующим образом: при при т. е.

Эта функция определена двумя аналитическими выражениями, действующими на различных участках ее области определения. График данной функции изображен на рис. 18.

Табличный способ задания функции. При табличном задании функции составляется таблица, в которой указывается ряд значений аргумента и соответствующих значений функции. Широко известны логарифмические таблицы, таблицы значений тригонометрических функций и многие другие. Довольно часто приходится пользоваться таблицами значений функций, полученных непосредственно из опыта. В нижеследующей таблице приведены полученные из опыта удельные сопротивления меди (в см - сантиметрах) при различных температурах t (в градусах):

Графический способ задания функции. При графическом задании дается график функции, и ее значения, соответствующие тем или иным значениям аргумента, непосредственно находятся из этого графика. Во многих случаях такие графики чертятся с помощью самопишущих приборов.


Различные способы задания функции Аналитический, графический, табличный – наиболее простые, а потому наиболее популярные способы задания функции, для наших нужд этих способов вполне достаточно. Аналитическийграфическийтабличный На самом деле в математике имеется довольно много различных способов задания функции и один из них – словесный, который используется в весьма своеобразных ситуациях.


Словесный способ задания функции Функция может быть задана и словесно, т. е. описательно. Например, так называемая функция Дирихле задается следующим образом: функция у равна 0 для всех рациональных и 1 для всех иррациональных значений аргумента х. Такая функция не может быть задана таблицей, так как она определяется на всей числовой оси и множество значений ее аргумента бесконечно. Графически данная функция также не может быть задана. Аналитическое выражение для этой функции было, все же найдено, но оно так сложно, что не имеет практического значения. Словесный же способ дает краткое и ясное ее определение.


Пример 1 Функция y = f (x) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х 0 ставится в соответствии первый знак после запятой в десятичной записи числа x. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой – цифра 5); если х = 13,002, то f(х) = 0; если х = 2/3, то, записав 2/3 в виде бесконечной десятичной дроби 0,6666…, находим f(x) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000…, и мы видим, что первый десятичный знак после запятой есть 0 (вообще – то верно равенство 15 = 14,999…, но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).


Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное число значений первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. D (f) = . = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" class="link_thumb"> 7 Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1 x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1"> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [">


Из всех указанных способов задания функции наибольшие возможности для применения аппарата математического анализа дает аналитический способ, а н нн наибольшей наглядностью обладает г гг графический. Вот почему математический анализ основывается на глубоком синтезе аналитических и геометрических методов. Исследование функций, заданных аналитически, проводится гораздо легче и становится наглядным, если параллельно рассматривать и графики этих функций.





Х у=х


Великий математик - Дирихле В профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды по теории чисел и математическому анализу. В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, установил признак сходимости ряда (т.н. признак Дирихле, 1862), дал (1829) строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике (принцип Дирихле в теории гармонической функции). Дирихле Петер Густав Лежён () Немецкий математик, иностранный чл.-корр. Петербургской АН (с), член Лондонского королевского общества (1855), Парижской АН (1854), Берлинской АН. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой - числа взаимно простые и изучал (1837) закон распределения простых чисел в арифметических прогрессиях, в связи с чем ввел функциональные ряды особого вида (т.н. ряды Дирихле).



Сделаем ряд разъяснительных замечаний по поводу задания функции аналитическим выражением или формулой, которые играют в математическом анализе исключительно важную роль.

1° Прежде всего, какие аналитические операции или действия могут входить в эти формулы? На первом месте здесь разумеются все изученные в элементарной алгебре и тригонометрии операции: арифметические действия, возвышение в степень (и извлечение корня), логарифмирование, переход от углов к их тригонометрическим величинам и обратно [см. ниже 48 - 51]. Однако, и это важно подчеркнуть, к их числу по мере развития наших сведений по анализу будут присоединяться и другие операции, в первую голову - предельный переход, с которым читатель уже знаком из главы I.

Таким образом, полное содержание термина «аналитическое выражение» или «формула» будет раскрываться лишь постепенно.

2° Второе замечание относится к области определения функции аналитическим выражением или формулой.

Каждое аналитическое выражение, содержащее аргумент х, имеет, так сказать, естественную область применения: это множество всех тех значений х, для которых оно сохраняет смысл, т. е. имеет вполне определенное, конечное, вещественное значение. Разъясним это на простейших примерах.

Так, для выражения такой областью будет все множество вещественных чисел. Для выражения эта область сведется к замкнутому промежутку за пределами которого значение его перестает быть вещественным. Напротив, выражению придется в качестве естественной области применения отнести открытый промежуток ибо на концах его знаменатель обращается в 0. Иногда область значений, для которых выражение сохраняет смысл, состоит из разрозненных промежутков: для это будут промежутки для - промежутки и т. д.

В качестве последнего примера рассмотрим сумму бесконечной геометрической прогрессии

Если то, как мы знаем , этот предел существует и имеет значение . При предел либо равен либо вовсе не существует. Таким образом, для приведенного аналитического выражения естественной областью применения будет открытый промежуток

В последующем изложении нам придется рассматривать как более сложные, так и более общие аналитические выражения, и мы не раз будем заниматься исследованием свойств функций, задаваемых подобным выражением во всей области, где оно сохраняет смысл, т. е. изучением самого аналитического аппарата.

Однако возможно и другое положение вещей, на что мы считаем нужным заранее обратить внимание читателя. Представим себе, что какой-либо конкретный вопрос, в котором переменная х по существу дела ограничена областью изменения X, привел к рассмотрению функции допускающей аналитическое выражение. Хотя может случиться, что это выражение имеет смысл и вне области X, выходить за ее пределы, разумеется, все же нельзя. Здесь аналитическое выражение играет подчиненную, вспомогательную роль.

Например, если, исследуя свободное падение тяжелой точки с высоты над поверхностью земли, мы прибегнем к формуле

То нелепо было бы рассматривать отрицательные значения t или значения большие, чем ибо, как легко видеть, при точка уже упадет на землю. И это несмотря на то, что само выражение - сохраняет смысл для всех вещественных .

3° Может случиться, что функция определяется не одной и той же формулой для всех значений аргумента, но для одних - одной формулой, а для других - другой. Примером такой функции в промежутке может служить функция, определяемая следующими тремя формулами:

и, наконец, если .

Упомянем еще о функции Дирихле (P. G. Lejeune-Dinchlet), которая определяется так:

Наконец, вместе с Кронекером (L. Kroneckcf) рассмотрим функцию, которую он назвал «сигнум и обозначил через