Как рассчитать стены из кладки на устойчивость. Несущая способность внутренней стены в один кирпич

Рисунок 1 . Расчетная схема для кирпичных колонн проектируемого здания.

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:

Пример расчета кирпичной колонны на устойчивость при центральном сжатии

Проектируется:

Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0.25х0.25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

Расчетные предпосылки:

.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, Санкт-Петербурге составляет 180 кг/м 2 , а в Ростове-на-Дону - 80 кг/м 2 . С учетом веса самой кровли 50-75 кг/м 2 нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1.25 + 75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м 2 , тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0.38·0.38 = 649.8 кг или 0.65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10.3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0.9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9.4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5.8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см 2 , однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки (согласно СНиП II-22-81 (1995))

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м 2 умножать значение расчетного сопротивления на коэффициент условий работы γ с =0.8 . А так как площадь сечения нашей колонны составляет 0.25х0.25 = 0.0625 м 2 , то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см 2 . В итоге расчетное сопротивление для нашей колонны составит 15·0.8 = 12 кг/см 2 , тогда максимальное сжимающее напряжение составит:

10300/625 = 16.48 кг/см 2 > R = 12 кгс/см 2

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0.8 = 17.6 кг/см 2) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

где m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≈ 30 см, значение данного коэффициента можно принимать равным 1.

Примечание : Вообще-то с коэффициентом m g все не так просто, подробности можно посмотреть в комментариях к статье.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l 0 , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции изложены отдельно , здесь лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l 0 при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l 0 = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l 0 = 1,5H , для многопролетных зданий l 0 = 1,25H ;

в) для свободно стоящих конструкций l 0 = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l 0 = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l 0 = 1.25H = 1.25·3 = 3.75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой , так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему

например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно приниматьl 0 = 1.25H .

2. Сделать другое перекрытие ,

например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l 0 = H .

3. Сделать диафрагму жесткости

в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l 0 = 2Н

В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l 0 /h (1.2) или

λ i = l 0 /i (1.3)

где h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций (согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0.6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.6х0.8х22х625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0.38х0.38 м, то таким образом не только увеличится площадь сечения колонны до 0.13 м 2 или 1300 см 2 , но увеличится и радиус инерции колонны до i = 11.45 см . Тогда λ i = 600/11.45 = 52.4 , а значение коэффициента φ = 0.8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.8х0.8х22х1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1х0.8х0.8х12х1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0.51х0.51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см 2 .

Пример расчета кирпичной колонны на устойчивость при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов, которые подробно рассматриваются в статье "Расчет опорного участка балки на смятие ". Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

где W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1х0.8х0.8х12х2601 - 3000·20·2601 · 6/51 3 = 19975, 68 - 7058.82 = 12916.9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методику расчета, рекомендуемую СНиПом здесь не привожу.

В.В. Габрусенко

Нормы проектирования (СНиП II-22-81) разрешают принимать минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа. При высоте этажа до 5 м в эти ограничения вполне вписывается кирпичная стена толщиной всего 250 мм (1 кирпич), чем и пользуются проектировщики - особенно часто в последнее время.

С точки зрения формальных требований, проектировщики действуют на вполне законном основании и энергично сопротивляются, когда кто-то пытается их намерениям препятствовать.

Между тем тонкие стены наиболее сильно реагируют на всевозможные отклонения от проектных характеристик. Причем даже на такие, которые официально допустимы Нормами правил производства и приемки работ (СНиП 3.03.01-87). В их числе: отклонения стен по смещению осей (10 мм), по толщине (15 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

К чему приводят эти отклонения, рассмотрим на примере внутренней стены высотой 3,5 м и толщиной 250 мм из кирпича марки 100 на растворе марки 75, несущей расчетную нагрузку от перекрытия 10 кПа (плиты пролетом по 6 м с обеих сторон) и веса вышележащих стен. Стена рассчитана на центральное сжатие. Её расчетная несущая способность, определенная по СНиП II-22-81, составляет 309 кН/м.

Допустим, что нижняя стена смещена от оси на 10 мм влево, а верхняя стена - на 10 мм вправо (рисунок). Кроме того, на 6 мм вправо от оси смещены плиты перекрытия. То есть, нагрузка от перекрытия N 1 = 60 кН/м приложена с эксцентриситетом 16 мм, а нагрузка от вышележащей стены N 2 - с эксцентриситетом 20 мм, тогда эксцентриситет равнодействующей составит 19 мм. При таком эксцентриситете несущая способность стены снизится до 264 кН/м, т.е. на 15%. И это - при наличии всего двух отклонений и при условии, что отклонения не превышают допустимые Нормами значения.

Если добавить сюда несимметричное нагружение перекрытий временной нагрузкой (справа больше, чем слева) и «допуски», которые позволяют себе строители, - утолщение горизонтальных швов, традиционно плохое заполнение вертикальных швов, некачественная перевязка, искривление или наклон поверхности, «подмолаживание» раствора, чрезмерное использование половняка и т. д. и т. п., - то несущая способность может снизиться еще не менее чем на 20…30%. В итоге перегрузка стены превысит величину 50…60%, за которой начинается необратимый процесс разрушения. Процесс этот проявляется не всегда сразу, бывает - спустя годы после завершения строительства. Причем надо иметь в виду, что чем меньше сечение (толщина) элементов, тем сильнее отрицательное влияние перегрузок, поскольку с уменьшением толщины уменьшается возможность перераспределения напряжений в пределах сечения за счет пластических деформаций кладки.

Если добавить ещё неравномерные деформации оснований (вследствие замачивания грунтов), чреватые поворотом подошвы фундамента, «зависанием» наружных стен на внутренних несущих стенах, образованием трещин и снижением устойчивости, то речь уже пойдет не просто о перегрузке, а о внезапном обрушении.

Сторонники тонких стен могут возразить, что для всего этого нужно слишком большое сочетание дефектов и неблагоприятных отклонений. Ответим им: подавляющее большинство аварий и катастроф в строительстве происходит именно тогда, когда в одном месте и в одно время собирается несколько негативных факторов - в этом случае «слишком много» их не бывает.

Выводы

    Толщина несущих стен должна составлять не менее 1,5 кирпичей (380 мм). Стены толщиной в 1 кирпич (250 мм) допускается применять только для одноэтажных или для последних этажей многоэтажных зданий.

    Это требование следует внести в будущие Территориальные нормы проектирования строительных конструкций и зданий, необходимость в разработке которых давно назрела. Пока же можно только порекомендовать проектировщикам избегать применения несущих стен толщиной менее 1,5 кирпичей.

Приветствую всех читателей! Какой должна быть толщина кирпичных наружных стен – тема сегодняшней статьи. Наиболее часто используемыми стенами из мелких камней выступают кирпичные стены. Это обусловлено тем, что применение кирпича решает вопросы созидания зданий и сооружений практически любой архитектурной формы.

Начиная выполнять проект, проектная фирма производит расчет всех конструктивных элементов – в том числе рассчитывается толщина кирпичных наружных стен.

Стены в здании выполняют различные функции:

  • Если стены являются только ограждающей конструкцией – в этом случае они должны соответствовать теплоизоляционным требованиям, чтобы обеспечить постоянный температурный и влажностный микроклимат, а также обладать звукоизолирующими качествами.
  • Несущие стены должны отличаться необходимой прочностью и устойчивостью, но и как ограждающие, иметь теплозащитные свойства. Кроме того, исходя из назначения постройки, ее класса, толщина несущих стенок должна соответствовать техническим показателям его долговечности, огнестойкости.

Особенности расчета толщины стен

  • Толщина стен по теплотехническому подсчету не всегда совпадает с расчетом величины по прочностным характеристикам. Естественно, что чем суровей климат, тем толще должна быть стена по теплотехническим показателям.
  • А вот по условиям прочности, например, достаточно выложить наружные стенки в один кирпич или полтора. Вот здесь и получается «нонсенс» - толщина кладки, определенная теплотехническим расчетом, зачастую, по требованиям прочности получается излишней.
  • Поэтому класть сплошную кладку стен из полнотелого кирпича с точки зрения материальных затрат и при условии 100% использования ее прочности следует только в нижних этажах многоэтажек.
  • В малоэтажных постройках, а также в верхних этажах многоэтажек следует использовать для наружной кладки пустотелый или легкий кирпич, можно применить облегченную кладку.
  • Это не распространяется на наружные стены в зданиях, где имеет место повышенный процент влажности (например, в прачечных, банях). Они возводятся, обычно, с защитным слоем из пароизоляционного материала изнутри и из полнотелого глиняного материала.

Сейчас расскажу вам о том, из какого подсчета складывается толщина наружных стен.

Она определяется по формуле:

В = 130*n -10, где

B – толщина стены в миллиметрах

130 – размер половины кирпича с учетом шва (вертикального = 10мм)

n – целое число половинки кирпича (= 120мм)

Полученную по расчету величину сплошной кладки округляем до целого числа полукирпичей в большую сторону.

Исходя из этого, получаются следующие величины (в мм) кирпичных стен:

  • 120 (в пол кирпича, но это считается перегородкой);
  • 250 (в один);
  • 380 (в полтора);
  • 510 (в два);
  • 640 (в два с половиной);
  • 770 (в три).

В целях экономии материальных ресурсов (кирпича, раствора, арматуры и прочего), количества машино – часов механизмов, подсчет толщины стен привязывается к несущей способности здания. А теплотехническая составляющая получается за счет утепления фасадов зданий.

Чем можно утеплить наружные стены здания из кирпича? В статье утепление дома пенополистиролом снаружи, я указал причины, по которым нельзя этим материалом утеплять кирпичные стены. Ознакомьтесь со статьей.

Смысл в том, что кирпич пористый и водопроницаемый материал. А впитывающая способность пенопополистирола равна нулю, что препятствует миграции влаги наружу. Именно поэтому стену из кирпича целесообразно утеплять теплоизоляционной штукатуркой или минераловатными плитами, природа которых является паропроницаемой. Пенополистирол годится для утепления основания из бетона или железобетона. «Природа утеплителя должна соответствовать природе несущей стены».

Теплоизолирующих штукатурок много – разница состоит в составляющих. Но принцип нанесения один. Выполняется она слоями и общая толщина может доходить до 150мм (при большой величине обязательно армирование). В большинстве случаев эта величина составляет 50 - 80 мм. Это зависит от климатического пояса, толщины стен основы, прочих факторов. Подробно останавливаться не буду, так как это тема уже другой статьи. Возвращаемся к своим кирпичам.

Среднестатистическая толщина стен для обыкновенного глиняного кирпича в зависимости от района и климатических условий местности при зимней средне сложившейся температуре окружающего воздуха выглядит в миллиметрах примерно так:

  1. - 5градусов - толщина = 250;
  2. - 10градусов = 380;
  3. - 20градусов = 510;
  4. - 30 градусов = 640.

Хочу подытожить вышеизложенное. Толщину наружных стен из кирпича рассчитываем исходя из прочностных характеристик, а теплотехническую сторону вопроса решаем методом утепления стен. Как правило, проектная фирма рассчитывает наружные стены без применения утеплителя. Если же дома будет некомфортно холодно и возникнет необходимость утепления, то внимательно отнеситесь к подбору утеплителя.

При строительстве своего дома одним из главных моментов является возведение стен. Кладка несущих поверхностей чаще всего проводится с применением кирпича, но какой должна быть толщина стены из кирпича в этом случае? К тому же стены в доме бывают не только несущими, но еще выполняющими функции перегородок и облицовки- какой должна быть толщина кирпичной стены в этих случаях? Об этом, я расскажу в сегодняшней статье.

Этот вопрос очень актуален для всех людей, которые строят собственный кирпичный дом и только постигают азы строительства. На первый взгляд кирпичная стена весьма простая конструкция, она имеет высоту, ширину и толщину. Интересующая нас грузность стены зависит в первую очередь от ее конечной общей площади . То есть, чем шире и выше стена, тем толще она должна быть.

Но, причем здесь толщина стены из кирпича? – спросите вы. При том, что в строительстве, многое завязано на прочности материала. У кирпича, как и у других строительных материалов , есть свой ГОСТ, который учитывает его прочность. Также грузность кладки зависит от ее устойчивости. Чем уже и выше будет несущая поверхность, тем толще она обязана быть, особенно это касается основания.

Еще один параметр, который влияет на общую грузность поверхности, это теплопроводность материала. У обыкновенного полнотелого блока теплопроводность довольно высокая. Это значит, что он, сам по себе, плохая теплоизоляция. Поэтому чтобы выйти на стандартизированные показатели теплопроводности, строя дом исключительно из силикатных или любых других блоков, стены должны быть очень толстыми.

Но, в целях экономии средств и сохранения здравого смысла, люди отказались от идей строить дома напоминающие бункер. Чтобы иметь прочные несущие поверхности и при этом хорошую теплоизоляцию, стали применять многослойную схему. Где одним слоем выступает силикатная кладка, достаточной грузности, чтобы выдерживать все нагрузки, которым она подвержена, второй слой – это утепляющий материал, а третий – облицовка, которой так же может выступать кирпич.

Выбор кирпича

В зависимости от того, какой должна быть, нужно выбирать определенный вид материала, имеющий разные размеры и даже структуру. Так, по структуре их можно разделить на полнотелые и дырчатые. Полнотелые материалы имеют большую прочность, стоимость, и теплопроводность.

Стройматериал с полостями внутри в виде сквозных отверстий не так прочен, имеет меньшую стоимость, но при этом способность к теплоизоляции у дырчатого блока выше. Это достигается за счет наличия в нем воздушных карманов.

Размеры любых видов рассматриваемого материала также могут разниться. Он может быть:

  • Одинарным;
  • Полуторным;
  • Двойным;
  • Половинчатым.

Одинарный блок, это стройматериал, стандартных размеров , такой к которому мы все привыкли. Его размеры таковы: 250Х120Х65 мм.

Полуторный или утолщенный – имеет большую грузность, и его размеры выглядят так: 250Х120Х88 мм. Двойной – соответственно, имеет сечение двух одинарных блоков 250Х120Х138 мм.

Половинчатый – это малыш среди своих собратьев, он имеет, как вы, вероятно, уже догадались, половину толщины одинарного – 250Х120 Х12 мм.

Как видно, единственные отличия в размерах этого стройматериала в его толщине, а длина и ширина одинаковые.

В зависимости от того, какой будет толщина стены из кирпича, экономически целесообразн, выбирать более крупные при возведении массивных поверхностей, например, такими часто бывают несущие поверхности и более мелкие блоки, для перегородок.

Толщина стены

Мы уже рассмотрели параметры, от которых зависит толщина наружных стен из кирпича. Как мы помним, это устойчивость, прочность, теплоизоляционные свойства. Кроме этого, разные виды поверхностей, должны иметь совершенно разную размерность.

Несущие поверхности это, по сути, опора всего здания, они берут на себя основную нагрузку, от всей конструкции, включая вес крыши, на них же влияют внешние факторы, такие как ветра, осадки, кроме того на них давит их собственный вес. Поэтому их грузность, по сравнению с поверхностями ненесущего характера и внутренними перегородками, должна быть наиболее высокой.


В современных реалиях большинству двух и трехэтажных домов, достаточно 25 см толщины или одного блока, реже в полтора или 38 см. Прочности у такой кладки будет достаточно для здания таких размеров, но как быть с устойчивостью. Здесь все гораздо сложнее.

Для того чтобы рассчитать будет ли устойчивость достаточной нужно обратиться к нормам СНиП II-22-8. Давайте рассчитаем, будет ли устойчив наш кирпичный дом, со стенами толщиной в 250 мм, длинною в 5 метров и высотой в 2.5 метра. Для кладки будем использовать материал М50, на растворе М25, расчет проведем для одной несущей поверхности, без окон. Итак, приступим.


Таблица № 26

По данным из таблицы выше, нам известно, что характеристика нашей кладки относится к первой группе, а также для нее справедливо описание из пункта 7. Табл. 26. После этого, смотрим в таблицу 28 и находим значение β, которое означает допустимое соотношение грузности стены к ее высоте, учитывая, вид используемого раствора. Для нашего примера это значение равно 22.


  • k1 для сечения нашей кладки равно 1.2 (k1=1.2).
  • k2=√Аn/Аb где:

Аn – площадь сечения несущей поверхности по горизонтали, расчет прост 0.25*5=1.25 кв. м

Ab – площадь сечения стены по горизонтали учитывая оконные проемы у нас таковые отсутствуют, поэтому k2 = 1.25

  • Значение k4 задано, и для высоты 2.5 м равно 0.9.

Теперь узнав, все переменные можно найти общий коэффициент «k», путем перемножения всех значений. K=1.2*1.25*0.9=1.35 Далее узнаем совокупное значение поправочных коэффициентов и фактически узнаем насколько устойчива рассматриваемая поверхность 1.35*22=29.7, а допустимое соотношение высоты и толщины равно 2.5:0.25=10, что значительно меньше, полученного показателя 29.7. Это означает, что кладка толщиной в 25 см шириной 5 м и высотой в 2.5 метра обладает устойчивость почти в три раза выше, чем это необходимо по нормам СНиП.


Хорошо с несущими поверхностями разобрались, а что с перегородками и с теми что не несут на себе нагрузку. Перегородки, целесообразно делать в половину толщины – 12 см. Для поверхностей, которые не несут на себе нагрузки, так же справедлива формула устойчивости, которую мы рассмотрели выше. Но так как сверху, такая стена будет не закреплена, показатель коэффициента β нужно уменьшить на треть, и продолжить расчеты с уже другим значением.

Кладка в полкирпича, кирпич, полтора, два кирпича

В заключение давайте рассмотрим, как проводится кладка кирпича в зависимости от грузности поверхности. Кладка в полкирпича, самая простая из всех, так как нет необходимости делать сложные перевязки рядов. Достаточно, положить первый ряд материала, на идеально ровное основание и следить за тем, чтобы раствор равномерно ложился, и не превышал 10 мм в толщину.

Главным критерием качественной кладки сечением в 25 см, является осуществление качественной перевязки вертикальных швов , которые не должны совпадать. Для этого варианта кладки важно от начала до конца соблюдать выбранную систему, которых есть как минимум две, однорядная и многорядная. Отличаются они, способом перевязки и кладки блоков.


Прежде чем приступить к рассмотрению вопросов, связанных с расчетом толщины кирпичной стены дома, необходимо понимать, для чего это нужно. Например, почему нельзя возвести наружную стену толщиной в полкирпича, ведь кирпич такой твердый и прочный?

Очень многие неспециалисты не имеют даже базовых представлений о характеристиках ограждающих конструкций, тем не менее, берутся за самостоятельное строительство.

В этой статье мы рассмотрим два основных критерия расчета толщины кирпичных стен - несущие нагрузки и сопротивление теплопередаче. Но прежде чем погрузиться в скучные цифры и формулы, позвольте разъяснить некоторые моменты простым языком.

Стены дома в зависимости от их места в схеме проекта могут быть несущими, самонесущими, ненесущими и перегородками. Несущие стены выполняют ограждающую функцию, а также служат опорами плитам или балкам перекрытия или конструкции крыши. Толщина несущих кирпичных стен не может быть менее чем в один кирпич (250 мм). Большинство современных домов строится со стенами в один или 1,5 кирпича. Проектов частных домов, где бы требовались стены толще 1,5 кирпича, по логике вещей не должно существовать. Поэтому выбор толщины наружной кирпичной стены по большому счету - дело решенное. Если выбирать между толщиной в один кирпич или в полтора, то с чисто технической точки зрения для коттеджа высотой 1-2 этажа кирпичная стена толщиной 250 мм (в один кирпич марки прочности М50, М75, М100) будет соответствовать расчетам несущих нагрузок. Перестраховываться не стоит, поскольку расчеты уже учитывают снеговые, ветровые нагрузки и множество коэффициентов, обеспечивающих кирпичной стене достаточный запас прочности. Однако есть очень важный момент , действительно влияющий на толщину кирпичной стены - устойчивость.

Все когда-то в детстве играли кубиками, и замечали, что чем больше поставить кубиков друг на друга, тем менее устойчивой становится колонна из них. Элементарные законы физики, действующие на кубики, точно так же действуют и на кирпичную стену, ибо принцип кладки один и тот же. Очевидно, что между толщиной стены и ее высотой есть некая зависимость, обеспечивающая устойчивость конструкции. Вот об этой зависимости мы и поговорим в первой половине этой статьи.

Устойчивость стен , равно как и строительные нормативы несущих и прочих нагрузок, подробно описана в СНиП II-22-81 «Каменные и армокаменные конструкции». Эти нормативы являются пособием для конструкторов, и для «непосвященных» могут показаться довольно сложными для понимания. Так оно и есть, ведь чтобы стать инженером, необходимо учиться минимум четыре года. Тут можно было бы сослаться на «обращайтесь за расчетами к специалистам» и ставить точку. Однако, благодаря возможностям информационной паутины, сегодня почти каждый при желании может разобраться в самых сложных вопросах.

Для начала попробуем разобраться в вопросе устойчивости кирпичной стены. Если стена высокая и длинная, то толщины в один кирпич будет мало. В то же время, лишняя перестраховка может повысить стоимость коробки в 1,5-2 раза. А это сегодня деньги немалые. Чтобы избежать разрушения стены или лишних финансовых трат обратимся к математическому расчету.

Все необходимые данные для расчета устойчивости стены имеются в соответствующих таблицах СНиП II-22-81. На конкретном примере рассмотрим, как определить, достаточна ли устойчивость наружной несущей кирпичной (М50) стены на растворе М25 толщиной в 1,5 кирпича (0,38 м), высотой 3 м и длиной 6 м с двумя оконными проемами 1,2×1,2 м.

Обратившись к таблице 26 (табл. вверху), находим, что наша стена относится к I-ой группе кладки и подходит под описание пункта 7 данной таблицы. Дальше нам надо узнать допустимое соотношение высоты стены к ее толщине с учетом марки кладочного раствора. Искомый параметр β является отношением высоты стены к ее толщине (β=Н/h). В соответствии с данными табл. 28 β = 22. Однако наша стена не закреплена в верхнем сечении (иначе расчет требовался только по прочности), поэтому согласно п. 6.20 значение β следует уменьшить на 30%. Таким образом, β равно уже не 22, а 15,4.


Переходим к определению поправочных коэффициентов из таблицы 29, которая поможет найти совокупный коэффициент k :

  • для стены толщиной 38 см, не несущей нагрузки, k1=1,2;
  • k2=√Аn/Аb, где An - площадь горизонтального сечения стены с учетом оконных проемов, Аb - площадь горизонтального сечения без учета окон. В нашем случае, An= 0,38×6=2,28 м², а Аb=0,38×(6-1,2×2)=1,37 м². Выполняем вычисление: k2=√1,37/2,28=0,78;
  • k4 для стены высотой 3 м равен 0,9.

Путем перемножения всех поправочных коэффициентов находим общий коэффициент k= 1,2×0,78×0,9=0,84. После учета совокупности поправочных коэффициентов β =0,84×15,4=12,93. Это означает, что допустимое соотношение стены с требуемыми параметрами в нашем случае составляет 12,98. Имеющееся соотношение H/h = 3:0,38 = 7,89. Это меньше допустимого отношения 12,98, и это означает, что наша стена будет достаточно устойчивой, т.к. выполняется условие H/h

Согласно пункту 6.19 должно быть соблюдено еще одно условие: сумма высоты и длины (H +L ) стены должна быть меньше произведения 3kβh. Подставив значения, получим 3+6=9

Толщина кирпичной стены и нормы сопротивления теплопередаче

Сегодня подавляющее число кирпичных домов имеют многослойную конструкцию стен, состоящую из облегченной кирпичной кладки, утеплителя и фасадной отделки. Согласно СНиП II-3-79 (Строительная теплотехника) наружные стены жилых зданий с потребностью 2000°С/сут. должны обладать сопротивлением теплопередаче не менее 1,2 м².°С/Вт. Чтобы определить расчетное тепловое сопротивление для конкретного региона, необходимо учесть сразу несколько местных температурных и влажностных параметров. Для исключения ошибок в сложных подсчетах, предлагаем следующую таблицу, где показано требуемое тепловое сопротивление стен для ряда городов России, расположенных в разных строительно-климатических зонах согласно СНиП II-3-79 и СП-41-99.

Сопротивление теплопередаче R (термическое сопротивление, м².°С/Вт) слоя ограждающей конструкции определяется по формуле:

R =δ /λ , где

δ - толщина слоя (м), λ - коэффициент теплопроводности материала Вт/(м.°С).

Чтобы получить общее термическое сопротивление многослойной ограждающей конструкции, необходимо сложить термические сопротивления всех слоев структуры стены. Рассмотрим следующее на конкретном примере.

Задача состоит в том, чтобы определить, какая толщина должна быть у стены из силикатного кирпича, чтобы ее сопротивление теплопроводности соответствовало СНиП II-3-79 для наиболее низкого норматива 1,2 м².°С/Вт. Коэффициент теплопроводности силикатного кирпича составляет 0,35-0,7 Вт/(м.°С) в зависимости от плотности. Допустим наш материал имеет коэффициент теплопроводности 0,7. Таким образом, получаем уравнение с одной неизвестной δ=Rλ . Подставляем значения и решаем: δ =1,2×0,7=0,84 м.

Теперь вычислим, каким слоем пенополистирола нужно утеплить стену из силикатного кирпича толщиной 25 см, чтобы выйти на показатель 1,2 м².°С/Вт. Коэффициент теплопроводности пенополистирола (ПСБ 25) не более 0,039 Вт/(м.°С), а у силикатного кирпича 0,7 Вт/(м.°С).

1) определяем R кирпичного слоя: R =0,25:0,7=0,35;

2) вычисляем недостающее тепловое сопротивление: 1,2-0,35=0,85;

3) определяем толщину пенополистирола, необходимую для получения теплового сопротивления равного 0,85 м².°С/Вт: 0,85×0,039=0,033 м.

Таки образом, установлено, что для приведения стены в один кирпич к нормативному тепловому сопротивлению (1,2 м².°С/Вт) потребуется утепление слоем пенополистирола толщиной 3,3 см.

Используя данную методику, вы сможете самостоятельно рассчитывать тепловое сопротивление стен с учетом региона строительства.

Современное жилое строительство заявляет высокие требования к таким параметрам, как прочность, надежность и теплозащита. Наружные стены выстроенные из кирпича обладают отличными несущими способностями, но имеют небольшие теплозащитные свойства. Если соблюдать нормативы по теплозащите кирпичной стены, то ее толщина должна быть не менее трех метров – а это попросту не реально.

Толщина несущей стены из кирпича

Такой строительный материал, как кирпич применяется для постройки уже несколько сотен лет. Материал имеет стандартные размеры 250х12х65, вне зависимости от вида. Определяя какой должна быть толщина стены из кирпича исходят именно из этих классических параметров.

Несущие стены являют собой жесткий каркас строения, которые нельзя рушить и перепланировать, так как нарушается надежность и прочность здания. Несущие стены выдерживают колоссальные нагрузки – это крыша, перекрытия, собственный вес и перегородки. Самым подходящим и проверенным временем материалом для строительства несущих стен является именно кирпич. Толщина несущей стены должна быть не меньше одного кирпича, или другими словами – 25 см. Такая стена обладает отличительными теплоизоляционными характеристиками и прочностью.

Правильно построенная несущая стена из кирпича имеет срок службы не одну сотню лет. Для малоэтажных домов применяют полнотелый кирпич с утеплителем или дырчатый.

Параметры толщины стен из кирпича

Из кирпича выкладываются как наружные, так и внутренние стены. Внутри сооружения толщина стены должна быть не менее 12 см, то есть в пол кирпича. Сечение столбов и простенков составляет не менее 25х38 см. Перегородки внутри здания могут быть толщиной 6.5 см. Такой метод кладки называется «на ребро». Толщина стены из кирпича, выполненная таким методом, должна армироваться металлическим каркасом через каждые 2 ряда. Армирование позволит стенам приобрести дополнительную прочность и выдержать более основательные нагрузки.

Огромной популярностью пользуется метод комбинированной кладки, когда стены составляются из нескольких слоев. Данное решение позволяет добиться большей надежности, прочности и теплосопротивления. Такая стена включает в себя:

  • Кирпичную кладку состоящую из поризованного или щелевого материала;
  • Утеплитель – минвата или пенопласт;
  • Облицовка – панели, штукатурка, облицовочный кирпич.

Толщина наружной комбинированной стены определяется климатическими условиями региона и используемым видом утеплителя. На самом деле стена может иметь стандартную толщину, а благодаря правильно выбранному утеплителю достигаются все нормы по теплозащите здания.

Кладка стены в один кирпич

Самая распространенная кладка стены в один кирпич, дает возможность получить толщину стены 250 мм. Кирпич в данной кладке не укладывается рядом друг с другом, так как стена не будет иметь нужную прочность. В зависимости от предполагаемых нагрузок толщина стены из кирпича может составлять 1.5, 2 и 2.5 кирпича.

Самое главное правило в кладке такого типа – это качественная кладка и правильная перевязка вертикальных швов, соединяющих материалы. Кирпич из верхнего ряда непременно должен перекрывать нижний вертикальный шов. Такая перевязка значительно увеличивает прочность конструкции и распределяет равномерно нагрузки на стену.

Виды перевязок:
  • Вертикальный шов;
  • Поперечный шов, не позволяющий сдвигать материалы по длине;
  • Продольный шов, препятствующий сдвижению кирпичей по горизонтали.

Кладка стены в один кирпич должна выполняться по строго выбранной схеме – это однорядная или многорядная. В однорядной системе первый ряд кирпича кладут ложковой стороной, второй тычковой. Поперечные швы сдвигаются на половину кирпича.

Многорядная система предполагает чередование через ряд, и через несколько ложковых рядов. Если используется утолщенный кирпич, тогда ложковые ряды составляют не более пяти. Данный метод обеспечивает максимальную прочность строения.

Следующий ряд укладывается в противоположном порядке, образовывая тем самым, зеркальное отражение первого ряда. Такая кладка имеет особую прочность, так как вертикальные швы нигде не совпадают и перекрываются верхними кирпичами.

Если планируется создаваться кладка в два кирпича, то соответственно толщина стены будет 51 см. Такое строительство необходимо только в регионах с сильными морозами или в строительстве, где не предполагается использовать утеплитель.

Кирпич был и до сих пор остается одним из основных строительных материалов в малоэтажном строительстве. Основные достоинства кирпичной кладки - это прочность, огнеупорность, влагостойкость. Ниже Мы приведем данные по расходу кирпича на 1 кв.м при различной толщине кирпичной кладки.

В настоящее время существует несколько способов выполнения кирпичной кладки (стандартная кирпичная кладка, липецкая кладка, московская и пр). Но при расчете расхода кирпича способ выполнения кирпичной кладки не важен, важна толщина кладки и размер кирпича. Кирпич производится различных размеров, характеристик и назначения. Основными типовыми размерами кирпича считаются так называемые "одинарный" и "полуторный" кирпич:

размер "одинарного " кирпича: 65 х 120 х 250 мм

размер "полуторного " кирпича: 88 х 120 х 250 мм

В кирпичной кладке, как правило, толщина вертикального растворного шва составляет в среднем около 10 мм, толщина горизонтального шва - 12 мм. Кирпичная кладка бывает различной толщины: 0.5 кирпича, 1 кирпич, 1.5 кирпича, 2 кирпича, 2.5 кирпича и т.д. Как исключение, встречается кирпичная кладка в четверть кирпича.

Кладку в четверть кирпича применяют для небольших перегородок, не несущих нагрузок (например, кирпичная перегородка между ванной комнатой и туалетом). Кирпичная кладка в пол-кирпича часто применяется для одноэтажных хозяйственных построек (сарай, туалет и т.п.), фронтонов жилых домов. Кладкой в один кирпич можно построить гараж. Для строительства домов (жилых помещений) применяется кирпичная кладка толщиной в полтора кирпича и более (в зависимости от климата, этажности, типа перекрытий, индивидуальных особенностей строения).

Исходя из приведенных данных о размерах кирпича и толщине соединительных растворных швов можно легко вычислить количество кирпичей, требуемое для возведения 1 кв.м стены выполненной кирпичной кладкой различной толщины.

Толщина стен и расход кирпичей при различной кирпичной кладке

Данные приведены для "одинарного" кирпича (65 х 120 х 250 мм) с учетом толщины растворных швов.

Тип кирпичной кладки Толщина стены, мм Кол-во кирпичей на 1 кв.м стены
0.25 кирпича 65 31
0.5 кирпича 120 52
1 кирпич 250 104
1.5 кирпича 380 156
2 кирпича 510 208
2.5 кирпича 640 260
3 кирпича 770 312

Требуется определить расчетную несущую способность участка стены здания с жесткой конструктивной схемой*

Расчет несущей способности участка несущей стены здания с жесткой конструктивной схемой.

К участку стены прямоугольного сечения приложена расчетная про­дольная сила N = 165 кН (16,5 тс), от длительных нагрузокN g = 150 кН (15 тс), кратковременныхN st = 15 кН (1,5тс). Размер сечения - 0,40x1,00 м, высота этажа - 3 м, нижние и верхние опоры стены - шарнирные, не­подвижные. Стена запроектирована из четырехслойных блоков проектной марки по прочности М50, с применением строительного раствора проектной марки М50.

Требуется проверить несущую способность элемента стены в середине высоты этажа при возведении здания в летних условиях.

В соответствии с п. для несущих стен толщиной 0,40 м случайный эксцентриситет не следует учитывать. Расчет производим по формуле

N m g RA  ,

где N - расчетная продольная сила.

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Площадь сечения элемента

А = 0,40 ∙ 1,0 = 0,40м.

Расчетное сопротивление сжатию кладки R по табл.1 настоящих Ре­комендаций с учетом коэффициента условий работы с = 0,8, см. п. , равно

R = 9,2-0,8 = 7,36 кгс/см 2 (0,736МПа).

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Расчетная длина элемента согласно черт., п. равна

l 0 = Η = З м.

Гибкость элемента равна

.

Упругая характеристика кладки , принимаемая по данным «Реко­мендациям», равна

Коэффициент продольного изгиба определяем по табл.

Коэффициент, учитывающий влияние длительной нагрузки при тол­щине стены 40 см, принимаем m g = 1.

Коэффициент для кладки из четырехслойных блоков принимается по табл. равным 1,0.

Расчетная несущая способность участка стены N cc равна

N cc = mg m g R A  =1,0 ∙ 0,9125 ∙ 0,736 ∙ 10 3 ∙ 0,40 ∙ 1,0 = 268,6 кН (26,86 тс).

Расчетная продольная сила N меньшеN cc :

N = 165 кН < N cc = 268,6 кН.

Следовательно, стена удовлетворяет требованиям по несущей способ­ности.

II пример расчета сопротивления теплопередаче стен зданий из четырехслойных теплоэффективных блоков

Пример. Определить сопротивление теплопередаче стены толщиной 400 мм из четырехслойных теплоэффективных блоков. Внутренняя поверхность стены со стороны помещения облицовывается гипсокартонными листами.

Стена проектируется для помещений с нормальной влажностью и умеренного наружного климата, район строительства - г. Москва и Мос­ковская область.

При расчете принимаем кладку из четырехслойных блоков со слоями, имеющими характеристики:

Внутренний слой - керамзитобетон толщиной 150 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Наружный слой - поризованный керамзитобетон толщиной 80 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Теплоизоляционный слой - полистирол толщиной 170 мм, - 0,05 Вт/м ∙ 0 С;

Сухая штукатурка из гипсовых обшивочных листов толщиной 12 мм - = 0,21 Вт/м ∙ 0 С.

Приведенное сопротивление теплопередаче наружной стены рассчиты­вается по основному конструктивному элементу, наиболее повторяемому в здании. Конструкция стены здания с основным конструктивным элементом приведена на рис.2, 3. Требуемое приведенное сопротивление теплопередаче стены определяется по СНиП 23-02-2003 «Тепловая защита зданий», исходя из условий энергосбережения по таблице 1б* для жилых зданий.

Для условий г. Москвы и Московской области требуемое сопротивле­ние теплопередаче стен зданий (II этап)

ГСОП = (20 + 3,6)∙213 = 5027 град. сут.

Общее сопротивление теплопередаче R o принятой конструкции стены определяется по формуле

,(1)

где и - коэффициенты теплоотдаче внутренней и наружной по­верхности стены,

принимаемые по СНиП 23-2-2003- 8,7 Вт/м 2 ∙ 0 С и 23 Вт/м 2 ∙ 0 С

соответственно;

R 1 ,R 2 ...R n - термические сопротивления отдельных слоев конструкций блока

n - толщина слоя (м);

n - коэффициент теплопроводности слоя (Вт/м 2 ∙ 0 С)

= 3,16 м 2 ∙ 0 С/Вт.

Определяем приведенное сопротивление теплопередаче стены R o без штукатурного внутреннего слоя.

R o =
= 0,115 + 0,163 + 3,4 + 0,087 + 0,043 = 3,808 м 2 ∙ 0 С/Вт.

При необходимости применения со стороны помещения внутреннего штукатурного слоя из гипсокартонных листов сопротивления теплопередаче стены увеличивается на

R шт. =
= 0,571 м 2 ∙ 0 С/Вт.

Термическое сопротивление стены составит

R o = 3,808 + 0,571 = 4,379 м 2 ∙ 0 С/Вт.

Таким образом, конструкция наружной стены из четырехслойных теплоэффективных блоков толщиной 400 мм с внутренним штукатурным слоем из гипсокартонных листов толщиной 12 мм общей толщиной 412 мм имеет приведенное сопротивление теплопередаче равное 4,38 м 2 ∙ 0 С/Вт удовлетво­ряет требованиям, предъявляемым к теплозащитным качествам наружных ограждающих конструкций зданий в климатических условиях г. Москвы и Московской области.

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 .

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 .

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).



Пустошовка Растрескивание кирпича Искривление рядов кладки

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с , несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.

РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 ):

Nс=mg×φ×R×A×Kтр ≥ N (1)

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2 .
Упругая характеристика кладки согласно п.9 Таблицы 15(К) равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N .

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.