Воздействует ли на авиадиспетчера инфразвук. Инфразвук

Ультразвук:

  1. Что такое ультразвук;
  2. Влияние ультразвука на организм человека;
  3. Использование ультразвука в промышленности и хозяйстве;
  4. Перспективы использования ультразвука.

Инфразвук:

  1. Что такое инфразвук;
  2. Влияние инфразвука на организм человека;
  3. Инфразвуковые аномалии;
  4. Животные, использующие инфразвук;
  5. Перспективы использования инфразвука;
  6. Вывод

Ультразвук

1. Что такое ультразвук?

В последнее время все более широкое распространение в производстве находят технологические процессы, основанные на использовании энергии ультразвука. Ультразвук нашел также применение в медицине. В связи с ростом единичных мощностей и скоростей различных агрегатов и машин растут уровни шума, в том числе и в ультразвуковой области частот.

Ультразвуком называют механические колебания упругой среды с частотой, превышающей верхний предел слышимости -20 кГц. Единицей измерения уровня звукового давления является дБ. Единицей измерения интенсивности ультразвука является ватт на квадратный сантиметр (Вт/с2) Человеческое ухо не воспринимает ультразвук, однако некоторые животные, например, летучие мыши могут и слышать, и издавать ультразвук. Частично воспринимают его грызуны, кошки, собаки, киты, дельфины. Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей.

Вследствие большой частоты (малой длины волны) ультразвук обладает особыми свойствами. Так, подобно свету, ультразвуковые волны могут образовывать строго направленные пучки. Отражение и преломление этих пучков на границе двух сред подчиняется законам геометрической оптики. Он сильно поглощается газами и слабо - жидкостями. В жидкости под воздействием ультразвука образуются пустоты в виде мельчайших пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют протекание процессов диффузии.

Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское использование. Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности). В ультразвуковой терапии для лечебных целей используют колебания 800-900 кГц.

2. Влияние ультразвука на организм человека

Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания. Ультразвуковые колебания, генерируемые ультразвуком низкочастотным промышленным оборудованием, оказывают неблагоприятное влияние на организм человека. Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов.

В поле ультразвуковых колебаний в живых тканях ультразвук оказывает механическое, термическое, физико-химическое воздействие (микромассаж клеток и тканей). При этом активизируются обменные процессы, повышаются иммунные свойства организма.

3. Использование ультразвука в промышленности и хозяйстве

Сегодня ультразвук применяется в огромном количестве отраслей. Среди них: медицина, геология, сталелитейная промышленность, военная промышленность и т.д. Чрезвычайно интенсивно ультразвук применяется в геологии, существует специальная наука – геофизика.

С помощью ультразвука геофизики находят залежи ценных ископаемых и определяют глубину их местонахождения. В металолитейной отрасли ультразвук применяется для диагностики состояния кристаллической решетки металла. При “прослушивании” труб, балок у качественных изделий получается определенный сигнал, если же у изделия что-то отличается от нормы (плотность, дефект конструкции), сигнал будет другим, что и укажет инженеру на брак.

Окруженная вражескими суднами подводная лодка имеет только один безопасный способ связаться с базой – передать сигнал в водной среде. Для этого используется особенный условный ультразвуковой сигнал определенной частоты – перехватить такое послание практически невозможно, т.к. для этого необходимо знать его частоту, точное время передачи и “маршрут”. Однако отправка сигнала с лодки также является сложнейшей процедурой – необходимо учитывать все глубины, температуру воды и т.д. База, получая сигнал, и, зная время его прохождения, может высчитать расстояния до лодки, в результате – ее местонахождение. Также в подводном флоте используют специальные короткие ультразвуковые импульсы, посылаемые гидролокатором прямо с подводной лодки; импульс отражается от предметов – скал, других судов, и с его помощью рассчитывают направление и расстояние до препятствия (прием, позаимствованный у ночных хищников - летучих мышей).

Также используются ультразвуковые ванны, как для дезинфекции инструментов, так и в косметических целях – массаж ступней ног, рук, лица. Очень эффективны ультразвуковые увлажнители воздуха и форсунки, а также дальномеры (во всем известных радарах скорости дорожной полиции также используются ультразвуковые импульсы).

4. Перспективы использования ультразвука

В перспективе предполагается более широкое использование ультразвуковых импульсов в косметических целях – ученые уже в ближайшем ультразвука для очистки пор, освежения, омоложения увядшей кожи – ультразвуковой пилинг. Ведутся работы по созданию ультразвукового оружия, а также разработки систем защиты от него. Предполагается более широкое использование ультразвука в бытовом хозяйстве.

Инфразвук

5. Что такое инфразвук?

Развитие техники и транспортных средств, совершенствование технологических процессов и оборудования сопровождаются увеличением мощности и габаритов машин, что обусловливает тенденцию повышения низкочастотных составляющих в спектрах и появление инфразвука, который является сравнительно новым, не полностью изученным фактором производственной среды.

Инфразвуком называют акустические колебания с частотой ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот. Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения). Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ.

6. Влияние инфразвука на организм людей

Исследования биологического действия инфразвука на организм показали, что при уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реактивные изменения, к числу которых следует отнести изменения в центральной нервной, сердечно- сосудистой и дыхательной системах, вестибулярном анализаторе. Имеются данные о том, что инфразвук вызывает снижение слуха преимущественно на низких и средних частотах. Выраженность этих изменений зависит от уровня интенсивности инфразвука и длительности действия фактора.

Инфразвук отнюдь не является недавно открытым явлением. В действительности органистам он известен уже более 250 лет. Во многих соборах и церквях есть столь длинные органные трубы, что они издают звук частотой менее 20 Гц, не воспринимаемый человеческим ухом. Но, как выяснили британские исследователи, такой инфразвук может вселить в аудиторию разнообразные и не слишком приятные чувства - тоску, ощущение холода, беспокойство, дрожь в позвоночнике. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками.

7. Инфразвуковые аномалии

Береговая линия Северной Америки в районе мыса Гаттерас, полуостров Флорида и остров Куба образуют гигантский рефлектор. Шторм, происходящий в Атлантическом океане, генерирует инфразвуковые волны, которые, отразившись от этого рефлектора, фокусируются в районе "Бермудского треугольника". Колоссальные размеры фокусирующей структуры позволяют предположить наличие областей, где инфразвуковые колебания могут достигать значительной величины, что и является причиной происходящих здесь аномальных явлений. Как известно, сильные инфразвуковые колебания вызывают у человека панический страх вместе с желанием вырваться из замкнутого пространства. Очевидно, такое поведение является следствием выработанной ещё в далеком прошлом "инстинктивной" реакции на инфразвук как предвестник землетрясения. Именно эта реакция заставляет экипаж и пассажиров в панике покидать свой корабль. Они могут сесть в шлюпки и уплыть от своего судна или выбежать на палубу и броситься за борт. При очень большой интенсивности инфразвука, они могут и вовсе погибнуть - попадая в резонанс с биоритмами человека, инфразвук особо высокой интенсивности может вызвать мгновенную смерть.

Инфразвук может быть причиной резонансного колебания корабельных мачт, приводящих к их поломке (к аналогичным последствиям может привести воздействие инфразвука на элементы конструкции самолёта). Низкочастотные звуковые колебания могут быть причиной появления над океаном быстро возникающего и также быстро исчезающего густого ("как молоко") тумана. И, наконец, инфразвук частотой 5-7 герц может попасть в резонанс с маятником механических, ручных часов, имеющих тот же период колебаний.

Очевидно, подобные фокусирующие структуры имеются и в других областях земного шара. По всей видимости, панический страх, вызываемый интенсивными инфразвуковыми колебаниями в одной из таких структур, послужил в качестве "отправной точки" мифа о сиренах...

Инфразвук может распространяться под водой, а фокусирующая структура - образовываться рельефом дна. Источником инфразвуковых колебаний могут быть подводные вулканы и землетрясения. Естественно, форма "ландшафтных" отражателей весьма далека от совершенства. Поэтому следует говорить о системе отражающих элементов, конкретной для каждого случая. При размерах, соизмеримых с длиной волны, структура может быть резонирующей.

8. Животные, использующие инфразвук

Американские учёные обнаружили, что тигры и слоны используют для коммуникации друг с другом не только рычание, мурлыкание или рев и трубные позывы, но также и инфразвук, то есть звуковые сигналы очень низкой частоты, неслышные для человеческого уха. По мнению учёных, инфразвук позволяет животным поддерживать связь на расстоянии до 8 километров, поскольку распространение инфразвуковых сигналов почти не чувствительно к помехам, вызванным рельефом местности, и мало зависит от погодных и климатических факторов вроде влажности воздуха.

Теперь учёные намерены выяснить, обладают ли частотные спектры тигриных голосов индивидуальными особенностями, позволяющими идентифицировать животных. Это существенно облегчило бы учёт их поголовья.

Изучая поведение группы слонов в зоопарке города Портленд в штате Орегон, группа исследователей "ощутила" в воздухе необычные колебания. Используя сложную электронную систему звукоулавливания, исследователи обнаружили, что это инфразвуковые волны, которые испускают слоны. Наблюдая за слонами, живущими на свободе в Кении, исследователи с помощью той же аппаратуры зарегистрировали точно такой же вид волн. Ученые пришли к выводу, что звуки низкой частоты животные используют для связи друг с другом на расстоянии в несколько километров.

Ученые надеются в будущем, определив значение инфразвуковых сигналов, перейти к самой увлекательной стадии экспериментов – установлению с их помощью контакта со слонами.

9. Перспективы использования инфразвука

Сейчас учеными ведется разработка так называемого “инфразвукового ружья”. Низкочастотные звуковые волны здесь планируется использовать в качестве “генератора паники”. В этом случае инфразвук намного удобнее высокочастотных волн, так как он сам по себе представляет угрозу для здоровья человека. Частоты нашей нервной системы и сердца лежат в диапазоне инфразвука - 6 Гц. Эмулирование этих частот приводит к плохому самочувствию, беспричинному страху, панике, сумасшествию, и, наконец, смерти.

10. Вывод

Выполнив данную работу - собрав, обработав и обобщив большое количество материала по данной проблеме, мы узнали много нового о природе звука. Об опасности, которую он может представлять для организма человека, и о том, насколько широко его можно использовать в хозяйстве. Наиболее интересной для нас оказалась гипотеза о природе “благоговейного ужаса”, трепета людей в храме. Очень перспективными мы считаем исследования способов коммуникации животных и, конечно использование инфразвука в целях прогнозирования места и времени будущих извержений и землетрясений.

вообще инфразвук действует за счет резонанса: частоты колебаний при многих процессах в организме лежат в инфразвуковом диапазоне:

сокращения сердца 1-2 Гц

дельта-ритм мозга (состояние сна) 0,5-3,5 Гц

альфа-ритм мозга (состояние покоя) 8-13 Гц

бета-ритм мозга (умственная работа) 14-35 Гц .

при совпадении колебаний инфразвука с колебаниями в теле последние усиливаются, что может привести к расстройству работы органа, его травме или даже разрыву на части. Собственная частота колебаний тела человека составляет примерно 8-15 герц. Грубо говоря, это означает, что каждое движение каждой мышцы вызывает затухающую микросудорогу всего тела с частотой его собственных колебаний. Когда на организм начинают воздействовать инфразвуком, колебания тела попадают в резонанс, и амплитуда микросудорог увеличивается в десятки раз. Понять, что с ним происходит, человек не может, инфразвук не слышен, но у него возникает чувство ужаса и опасности. При достаточно мощном воздействии в организме начинают разрываться внутренние органы, капилляры и сосуды.

В диапазоне 7-13 герц звучит природная «волна страха», излучаемая тайфунами, землетрясениями и извержениями вулканов и побуждающая все живое покидать очаги стихийных бедствий. При помощи инфразвука, например, запросто можно довести человека до самоубийства. Самым опасным считается промежуток от 6 до 9 Гц. Значительные психотронные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшение зрения и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту. Упругий мощный инфразвук способен повредить, и даже полностью остановить сердце.

Инфрачастоты около 12 Гц при силе в 85-110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15-18 Гцпри той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха.

Внутренние органы вибрируют тоже с инфразвуковыми частотами. В инфразвуковом диапазоне находится ритм кишечника. Медики обратили внимание на опасный резонанс брюшной полости, имеющей место при колебаниях с частотой 4-8 Гц. Попробовали стягивать (сначала на модели) область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось.

Легкие и сердце, как всякие объемные резонирующие системы, также склонны к интенсивным колебаниям при совпадении частот их резонансов с частотой инфразвука. Самое малое сопротивление инфразвуку оказывают стенки легких, что в конце концов может вызвать их повреждение.

Мозг. Здесь картина взаимодействия с инфразвуком особенно сложна. Небольшой группе испытуемых было предложено решить несложные задачи сначала при воздействии шума с частотой ниже 15 герц и уровнем примерно 115 дБ, затем при действии алкоголя и, наконец, при действии обоих факторов одновременно. Была установлена аналогия воздействия на человека алкоголя и инфразвукового облучения. При одновременном влиянии этих факторов эффект усиливался, способность к простейшей умственной работе заметно ухудшалась. В других опытах было установлено, что и мозг может резонировать на определенных частотах. Кроме резонанса мозга как упругоинерционного тела выявилась возможность “перекрестного” эффекта резонанса инфразвука с частотой a- и b- волн, существующих в мозгу каждого человека. Эти биологические волны отчетливо обнаруживаются на энцефалограммах, и по их характеру врачи судят о тех или иных заболеваниях мозга. Высказано предположение о том, что случайная стимуляция биоволн инфразвуком соответствующей частоты может влиять на физиологическое состояние мозга.

Кровеносные сосуды. Здесь имеются некоторые статистические данные. В опытах французских акустиков и физиологов 42 молодых человека в течении 50 минут подверглись воздействию инфразвука с частотой 7.5 Гц и уровнем 130 дБ. У всех испытуемых возникло заметное увеличение нижнего предела артериального давления. При воздействии инфразвука фиксировались изменения ритма сердечных сокращений и дыхания, ослабление функций зрения и слуха, повышенная утомляемость и другие нарушения. Исследования показали, что частота 19 герц - резонансная для глазных яблок, и именно она способна не только вызывать расстройство зрения, но и видения, фантомы. Многим знакомы неприятные ощущения после длительной езды в автобусе, поезде, плавания на корабле или качания на качелях. Говорят: «Меня укачало». Все эти ощущения связаны с действием инфразвука на вестибулярный аппарат, собственная частота которого близка к 6 Гц. При воздействии на человека инфразвука с частотами, близкими к 6 Гц, могут отличаться друг от друга картины, создаваемые левым и правым глазом, начнет «ломаться» горизонт, возникнут проблемы с ориентацией в пространстве, придут необъяснимая тревога, страх. Подобные ощущения вызывают и пульсации света на частотах 4-8 Гц. Еще египетские жрецы, чтобы добиться признания у пленника, привязывали его и с помощью зеркала освещали глаза пульсирующим солнечным лучом. Через некоторое время у пленника появлялись судороги, шла пена изо рта, его психика подавлялась, и он отвечал на вопросы. Инфразвук может действовать не только на зрение, но и на психику, а также шевелить волоски на коже, создавая ощущение холода.

В ходе опытов было зафиксировано, что инфразвуковая пушка, направляющая звуковые волны в глубины Земли, вызывает локальные землетрясения. В начале 1950-х годов французский исследователь Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. По мнению Гавро, при 7 Гц возможен паралич сердца и нервной системы. У профессора Гавро близкое знакомство с инфразвуками началось, можно сказать, случайно. В одном из помещений его лаборатории с некоторых пор стало невозможно работать. Не пробыв здесь и двух часов, люди чувствовали себя совсем больными: кружилась голова, наваливалась сильная усталость, нарушались мыслительные способности. Прошел не один день, прежде чем профессор Гавро и его коллеги сообразили, где следует искать неизвестного врага. Инфразвуки и состояние человека... Какие тут взаимосвязи, закономерности и последствия? Как оказалось, инфразвуковые колебания большой мощности создавала вентиляционная система завода, который был построен вблизи лаборатории. Частота этих волн была около 7 герц (то есть 7 колебаний в секунду), и это представляло опасность для человека. Инфразвук действует не только на уши, но и на весь организм. Начинают колебаться внутренние органы - желудок, сердце, легкие и так далее. При этом неизбежны их повреждения. Инфразвук даже не очень большой силы способен нарушать работу нашего мозга, вызвать обмороки и привести к временной слепоте. А мощные звуки более 7 герц останавливают сердце или же разрывают кровеносные сосуды. Биологи, изучавшие на себе, как действует на психику инфразвук большой интенсивности, установили, что иногда при этом рождается чувство беспричинного страха. Другие частоты инфразвуковых колебаний вызывают состояние усталости, чувство тоски или морскую болезнь с головокружением и рвотой. По мнению профессора Гавро, биологическое действие инфразвука проявляется тогда, когда частота волны совпадает с так называемым альфа-ритмом головного мозга. Работы этого исследователя и его сотрудников раскрыли уже многие особенности инфразвуков. Надо сказать, что все исследования с такими звуками далеко не безопасны. Профессор Гавро вспоминает, как пришлось прекратить опыты с одним из генераторов. Участникам эксперимента стало настолько плохо, что даже спустя несколько часов обычный низкий звук воспринимался ими болезненно. Был и такой случай, когда у всех, кто находился в лаборатории, задрожали предметы, находящиеся в карманах: ручки, записные книжки, ключи. Так показал свою силу инфразвук с частотой 16 герц. Британские учёные в очередной раз продемонстрировали, что инфразвук может оказывать очень странное, и, как правило, негативное влияние на психику людей. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Сотрудник Национальной лаборатории физики в Англии (National Physical Laboratory in England), доктор Ричард Лорд (Richard Lord), и профессор психологии Ричард Уайзман (Richard Wiseman) из Хертфордширского университета (University of Hertfordshire) провели довольно странный эксперимент над аудиторией из 750 человек. С помощью семиметровой трубы им удалось примешать к звучанию обычных акустических инструментов на концерте классической музыки сверхнизкие частоты. После концерта слушателей попросили описать их впечатления. "Подопытные" сообщили, что почувствовали внезапный упадок настроения, печаль, у некоторых по коже побежали мурашки, у кого-то возникло тяжёлое чувство страха. Самовнушением это можно было бы объяснить лишь отчасти. Из четырёх сыгранных на концерте произведений инфразвук присутствовал только в двух, при этом слушателям не сообщали, в каких именно. "Некоторые учёные полагают, что инфразвуковые частоты могут присутствовать в местах, которые, по легендам, посещают призраки, и именно инфразвук вызывает странные впечатления, обычно ассоциирующиеся с привидениями, - наше исследование подтверждает эти идеи", - заявил Уайзман. Вик Тэнди, компьютерщик из университета Ковентри, относил все легенды о привидениях к чепухе, не стоящей внимания. В тот вечер он, как всегда, работал в своей лаборатории и вдруг его прошиб холодный пот. Он явственно почувствовал, что на него кто-то смотрит, и этот взгляд несет с собой что-то зловещее. Потом это зловещее материализовалось в нечто бесформенное, пепельно-серого цвета, прошмыгнуло по комнате и вплотную приблизилось к ученому. В размытых очертаниях угадывались руки, ноги, а на месте головы клубился туман, в центре которого было темное пятно. Будто бы рот. Мгновение спустя видение бесследно растаяло в воздухе. К чести Вика Тэнди надо сказать, что пережив первый страх и шок, он начал действовать, как ученый - искать причину непонятного явления. Проще всего было отнести это к галлюцинациям. Но откуда им взяться - наркотики Тэнди не принимал, спиртным не злоупотреблял. Да и кофе пил в умеренных количествах. А что касается потусторонних сил, то ученый в них категорически не верил. Нет, надо искать обычные физические факторы. И Тэнди их нашел, хотя и чисто случайно. Помогло хобби - фехтование. Некоторое время спустя после встречи с "призраком" ученый захватил в лабораторию шпагу, чтобы привести ее в порядок для предстоящего состязания. И вдруг клинок, зажатый в тиски, начал вибрировать все сильнее и сильнее, словно к нему прикасалась невидимая рука. Обыватель так бы и подумал о невидимой руке. А ученого это натолкнуло на мысль о резонансных колебаниях, подобных тем, которые вызывают звуковые волны. Так, посуда в шкафу начинает звенеть, когда в комнате на полную мощь гремит музыка. Однако вся странность была в том, что в лаборатории стояла тишина. Впрочем, тишина ли? Задав себе этот вопрос, Тэнди тут же ответил на него: замерил звуковой фон специальной аппаратурой. И оказалось, что здесь стоит невообразимый шум, но звуковые волны имеют очень низкую частоту, которую человеческое ухо уловить не в состоянии. Это был инфразвук. И после недолгих поисков источник его был найден: недавно установленный в кондиционере новый вентилятор. Стоило только его выключить, как "дух" исчез и клинок перестал вибрировать. А не связан ли инфразвук с моим ночным призраком? - вот такая мысль пришла в голову ученого. Замеры частоты инфразвука в лаборатории показали 18,98 герца, а это почти точно соответствует той, при которой глазное яблоко человека начинает резонировать. Так что, судя по всему, звуковые волны заставили колебаться глазные яблоки Вика Тэнди и вызвали обман зрения - он увидел фигуру, которой на самом деле не было. Дальнейшие исследования показали, что в естественных условиях волны такой низкой частоты могут возникать достаточно регулярно. Инфразвук образуется, к примеру, когда сильные порывы ветра сталкиваются с дымовыми трубами или башнями. Подобные жуткие басы проникают даже сквозь самые толстые стены. Особенно часто такие звуковые волны начинают рокотать в коридорах, имеющих форму туннеля. Так что не случайно люди встречаются с привидениями чаще всего именно в длинных извилистых коридорах старинных замков. Да и с сильными ветрами в Соединенном Королевстве дефицита нет; над Британскими островами они дуют постоянно.

Результаты своей работы Вик Тэнди опубликовал в журнале Общества физических исследований. Джон Болдерстон репетировал в "Лайрик" пьесу, где время действия должно было во время одного затемнения сцены переноситься от наших дней к 1783 году. Как сделать "перескок" психологически и эмоционально эффективным --эту задачу предложил решить Вуд. Его идея заключалась в том, что очень низкая нота, почти не слышимая, но колеблющая барабанную перепонку, произведет ощущение "таинственности" и сообщит зрителям необходимое настроение. Это было выполнено с помощью органной "сверхтрубы", длиннее и толще, чем те, которые применяются в церковных органах. Трубу решили испытать на репетиции. Только Вуд, Лесли Ховард, Болдерстон и постановщик Джильберт Миллер в зале знали, что произойдет. Вопль с затемненной сцены означал перерыв в 145 лет. Здесь включили "неслышимую" ноту Вуда.

Последовал эффект вроде того, который предшествует землетрясению. Стекло в канделябрах старинного "Лайрик" зазвенело, и все окна задребезжали. Все здание начало дрожать, и волна ужаса распространилась на Шэфтсбюри Авеню. Миллер распорядился, чтобы "такую-сякую" органную трубу немедленно выкинули.

Источники инфразвука

Естественные источники Техногенные источники

К основным техногенным источникам инфразвука относится мощное оборудование - станки, котельные , транспорт , подводные и подземные взрывы . Кроме того, инфразвук излучают ветряные электростанции и, в некоторых случаях, вентиляционные шахты .

Распространение инфразвука

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Поскольку инфразвук слабо поглощается, он распространяется на большие расстояния и может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

Физиологическое действие инфразвука

Органы человека, как и любое физическое тело, имеют собственную резонансную частоту. Под воздействием звука с этой частотой они могут испытывать внутреннее изменение структуры, вплоть до потери собственной работоспособности. Предполагается, что на этом принципе может быть создано инфразвуковое оружие . Также при совпадении воздействующего звука с ритмами мозга, такими как альфа-ритм , бета-ритм , гамма-ритм , дельта-ритм , тета-ритм , каппа-ритм , мю-ритм , сигма-ритм и др., может возникнуть нарушение активности церебральных механизмов мозга.

  • 5-30 Гц (резонанс головы)
  • 19 Гц (резонанс глаз)
  • 0.5-13 Гц (резонанс вестибулярного аппарата)
  • 4-6 Гц (резонанс сердца)
  • 2-3 Гц (резонанс желудка)
  • 2-4 Гц (резонанс кишечника)
  • 6-8 Гц (резонанс почек)
  • 2-5 Гц (резонанс рук)

Физиологическое действие инфразвука на открытом пространстве

Рассмотрим в качестве примера вредную для человеческого организма стоячую волну частотой в 7 Гц, названную академиком Шулейкиным голос моря , образующуюся по принципу, схожему с образованием стоячей волны в трубе, у которой один конец открыт, а другой закрыт. Для такой трубы, открытой с одного конца, основная частота f = v/4L, где v - скорость звука в среде, L - длина трубы. Таким образом, опасный для человека инфразвук может образовываться в море с глубиной в h=v/4f+k*v/f (k=0, 1, 2, 3...) и ровным донным рельефом, что соответствует глубинам около 50 + 200*k метров, в зависимости от солёности и температуры воды.

Физиологическое действие инфразвука в помещении

В процессе трудовой деятельности большинство контактов человека и инфразвука (ИЗ) происходит в пространстве, ограниченном жесткими стенками.

С физической точки зрения все многообразие помещений может быть сведено к резонаторам двух типов: резонатору типа Гельмгольца и резонатору типа труба. В эксперименте показано, что даже небольшая, по сравнению с длинной ИЗ волны, комната может служить четвертьволновым резонатором частотой 5,5 Гц.

Таким образом, человек, в силу привычки или служебной необходимости находящийся в той или иной части помещения, будет контактировать с различными физическими компонентами распределенной в пространстве помещения акустической волны. С точки зрения биологии контакт с разными раздражителями должен вызвать разную ответную реакцию органов и систем.

Экспериментально показано, что нахождение в разных частях даже небольшого помещения способно вызвать разнонаправленную реакцию органов и систем человека и животных. Выделена зона градиента ИЗ волны, в которой падает работоспособность, уменьшается частота различия звуковых импульсов и световых мельканий, резко активируется активность симпатического звена регуляции сосудистой системы и развивается реакция гиперкоагуляции крови. Это связано с прямым действием ИЗ на стенки кровеносных сосудов.

В то же время у людей и животных, находящихся в противоположном конце помещения, умеренно, но статистически достоверно, растет работоспособность, уменьшается активность свертывающих систем крови и улучшаются показатели реакции на частоту световых мельканий.

Зависимость ответной реакции организма на нахождение человека и животных в разных частях одного и того же помещения сохранялась в пределах проверенной интенсивности ИЗ от 80 до 120 дБ (что соответствует уровням громкости обычного звука от «Опасный для здоровья» до «Болевой порог») и частотах 8, 10 и 12 Гц.

Никаких психических реакций на наиболее часто встречающиеся в промышленности уровни ИЗ выявлено не было. Данные опытов указывают, что ИЗ, даже невысокой интенсивности, в зависимости от места нахождения подопытного объекта, может быть небезопасен для здоровья и может, в то же самое время, обладать положительным стимулирующим эффектом.

Зональная биологическая активность ИЗ может послужить основой сравнительно простых способов защиты от ИЗ, основанных на выведении рабочего места человека-оператора из биологически вредной зоны.

Медузы и инфразвуки

На краю купола медузы расположены примитивные глаза, статоцисты и слуховые колбочки. Размеры их сравнимы с размерами булавочной головки. С их помощью медузы воспринимают инфразвуки с частотой 8-13 Гц.

Перед штормом усиливающийся ветер срывает гребни волн и захлёстывает их. Каждое такое захлопывание воды на гребне волны порождает акустический удар , создаются инфразвуковые колебания, расходящиеся на сотни километров, их улавливает медуза. Купол медузы усиливает инфразвуковые колебания, как рупор, и передаёт на слуховые колбочки. Восприняв этот сигнал, медузы уходят на дно за 20 часов до начала шторма на данной местности.

Бионики создали технику, предсказывающую бури, работа которых основана на принципе работы инфрауха медузы. Такой прибор может предупредить о надвигающейся буре за 15 часов, а не за два, как обычный морской барометр.

Примечания

См. также

Литература

  • Сокол Г. И. «Особенности акустических процессов в инфразвуковом диапазоне частот». - Днепропетровск: Проминь, 2000. - 143 с. (обзор 803 источников литературы).
  • Боенко И. В., Фрайман Б. Я. Колебания сосудистой стенки при действии инфразвука. Воронеж, 1983 г., стр. 1-8. Рукопись депонирована во ВНИИМИ 16.09.83. №Д-6783.
  • Фрайман Б. Я.,Безруков В. Е. Условия, при которых осуществляется прямое действие инфразвука на стенку кровеносного сосуда. Воронеж, 1983 г. стр. 1-13. Рукопись депонирована во ВНИИТИ 13.01.83г. № 6748-83
  • Жуков А. И., Иванников А. Н., Фрайман Б. Я. О необходимости изучения пространственной структуры звукового поля при оценке действия низкочастотного шума. «Борьба с шумом и звуковой вибрацией», Москва, 1989 г., стр 53-59.
  • Жуков А. И., Иванников А.Н, Ларюков А. С., Нюнин Б. Н.,Павлов В. И., Фрайман Б. Я. Определение аномально активной зоны вредного действия инфразвуковых шумов в жилых и административных помещениях. «Проблемы акустической экологии», Ленинград, Стройиздат, 1990 г. стр. 13-21.
  • Fraiman B., Ivannikov A., Zhukov A. On the influence of infranoise fildes on humanus. «6-th Internacional Meeting on Low friguence Noise and Vibracion». 4-6 September 1991. Leiden, pp.46-56.
  • Fraiman B., Voronin A., Fraiman E. The alternative mechanism of the infrasound influence on organism."Noise and Man −93. 6-th Internationale Congress. Nice,France,1993.Vol 2, pp 501-504.
  • Fraiman B. Mechanism of the infrasound effect in transport means. «Transport Noise - 94». St-Petersburg, Russia,1994,pp 29-32.

Инфразвуком называется область звуковых колебаний с частотами, лежащими ниже частоты диапазона человеческой слышимости, т.е меньше 20 Гц. Инфразвук является неотъемлемой составной частью спектральных шумов, излучаемых многими техногенными устройствами. Инфразвук характеризуется большой длиной акустической волны и низкой частот колебаний. Инфразвуковые волны практически не поглощаются воздухом, могут свободно обтекать различные препятствия и распространятся на достаточно большое расстояние. Эти частные особенности существенно затрудняют борьбу с ним, т.к типовые методы борьбы с шумом с помощью звукоизоляции практически не оказывают на него сколь заметного влияния.


В соответствии с санпином 2.2.4/2.1.8.583-96 "Инфразвук на рабочих местах, в общественных и жилых помещениях и на территории жилой застройки". Инфразвук оказывающий влияние на организм человека, можно условно поделить на:

по характеру акустического спектра :
широкополосный инфразвук, с постоянным спектром шириной от одной октавы
тональный инфразвук, в акустическом спектральном диапазоне которого есть слышимые дискретные составляющие. Тональный характер этих звуковых колебаний задается в октавных полосах частот по превышению уровня в одной полосе над соседними не меньше чем на уровень 10 дБ
По временным характеристикам:
постоянный инфразвук, уровень звукового давления которого меняется за заданное время измерения не более чем в два раза (на 6 дБ) при измерениях по линейной шкале шумомера на временной характеристике "медленно"
непостоянный инфразвук, уровень звукового давления которого будет изменятся за время наблюдения не менее чем в два раза (на 6 дБ) при измерениях по той же шкале прибора на аналогичной временной характеристике.

Проблему, связанная с воздействием инфразвука на организм человека подняли в 70-е годы прошлого века. Неблагоприятное влияние инфразвука на человеческий организм проявляется, прежде всего, в возникающих психических отклонениях, негативном воздействии на сердечнососудистую, эндокринную, дыхательную и другие системы биологического объекта, вестибулярный аппарат и т.п.

Инфрашумы воспринимаются организмом, в виде физической нагрузки: появляется утомление, головокружение и даже головная боль,. Инфразвук уровнем выше 150 дБ непереносим человеком, а при значениях 180 - 190 дБ организм необратимо разрушается из-за разрыва легочных альвеол.

Вредное инфразвуковое воздействие на человека сильно усугубляется при совпадении частоты инфразвуковых колебаний с собственной частотой человеческого органа, например сердца. Резонансные частоты для человека лежат в интервале 4-15 Гц. Инфразвуковые акустические колебания с частотой ниже 10 Гц вызывает резонанс в крупных внутренних органах - печени, желудке, сердце легких и т.п

Длительное воздействие инфразвуковых колебаний в частотном диапазоне 4 - 10 Гц вызывают, хронический гастрит, колит, и другие хронические проблемы желудка.

При воздействии на разумный биологический объект повышенных уровней инфразвука наблюдается затруднение дыхания, происходящие из-за резонансных вибраций в грудной клетки; тошнота из-за раздражения рецепторов; расстройство терморегуляции, выражающиеся в появление озноба; нарушения зрительного восприятия; многообразных вегетативных реакциях из-за нарушений функционирования гипоталамуса и т.п.

Частоты симптомов, появляющихся при коротком воздействии инфразвука высокого уровня (120-135 дБ) на разумный биологический объект.

Тошнота 0,47 Гц
Головокружение -0,71 Гц
Усталость, слабость (в том числе резкая слабость) 0,71 Гц
Ощущение вибрации тела, внутренних органов 0,65 Гц
Головная боль 0,61 Гц
Ощущение давление на барабанные перепонки, заложенность ушей 0,45 Гц
Чувство страха 0,41 Гц
Нарушение зрения (затуманенность зрения) 0,30 Гц
Сенестопатия (обманчивые, нереальные ощущения) 0,17 Гц
Вегетативные нарушения (бледность, потливость, сухость во рту, кожный зуд) 0,66 Гц
Психические нарушения (пространственная дезориентация, спутанность мыслей и др.) 0,67 Гц
Затруднение глотания 0,18 Гц
Ощущение удушья 0,22 Гц
Нарушение дыхания 0,28 Гц
Модуляция речи 0,10 Гц
Ознобоподобный тремор 0,20 Гц

Способы борьбы с инфразвуком

Как мы уже говорили выше, инфразвук способен распространяться на огромные расстояния из-за малого поглощения в атмосфере и умения огибать препятствия. Большие длинны волн определяют их выраженную дифракционную способность, а большие величины амплитуды инфразвуковых колебаний позволяют им оказывать негативное влияние на организм человека. даже на значительных расстояниях от источников генерации акустических колебаний.

Для защиты от инфразвука необходимо применять комплексный подход, заключающийся в конструктивных мерах снижения инфразвука в источнике его генерации, организационных мерах профилактики и в использовании средств индивидуальной защиты.

К основным мерам борьбы с этим явлениям относят:

1. Звукоизоляция объектов, являющихся источниками генерации, вынос их в отдельные помещения
Использование удаленного наблюдения с дистанционным управлением техпроцессом
Повышение быстроходности машин и механизмов, с переводом максимума излучения в область слышимых частот
Ликвидация низкочастотных вибраций
Использование инфразвуковых глушителей с механическим преобразованием частоты
Повышение жесткости больших конструкций
Введение в технологические процессы демпфирующих устройств малых линейных размеров, перераспределяющих спектр акустических колебаний в более высокочастотную область
Применение индивидуальных средств органов слуха и головы - наушников, противошумов, гермошлемов и т.д. Для повышения уровня защиты необходимо применять комбинацию различных типов защиты, например, вкладыши и противошумные наушники
Внедрение на производства рационального режима отдыха и труда - введение 20-минутных перерывов каждые 2 часа работы при воздействии превышающими нормативные.