Способы задания функции — Гипермаркет знаний. Функции и способы задания функций

Приводятся основные способы задания функций: явный аналитический; интервальный; параметрический; неявный; задание функции с помощью ряда; табличный; графический. Примеры применения этих способов

Существуют следующие способы задания функции y = f(x) :

  1. Явный аналитический способ по формуле вида y = f(x) .
  2. Интервальный.
  3. Параметрический: x = x(t) , y = y(t) .
  4. Неявный, как решение уравнения F(x, y) = 0 .
  5. В виде ряда, составленного из известных функций.
  6. Табличный.
  7. Графический.

Явный способ задания функции

При явном способе , значение функции определяется по формуле, представляющем собой уравнение y = f(x) . В левой части этого уравнения стоит зависимая переменная y , а в правой - выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции , область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:


Параметрический способ задания функции

При параметрическом способе , вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :


Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:

А можно и так:

Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных »). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.

Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Уравнения (1) - это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:

Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n - 1 дополнительных уравнений.

Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби ». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .

Неявный способ задания функции

При неявном способе , значения функции определяется из решения уравнения .

Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда , составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд степенных функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике для вычисления значений функций, поскольку они позволяют свести вычисления к арифметическим операциям.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):



.

В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.

Табличный способ задания функции

При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему значению. После этого определяем соответствующее значение зависимой переменной y .

Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь - значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда

.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе , значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат - зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных науках.


Различные способы задания функции Аналитический, графический, табличный – наиболее простые, а потому наиболее популярные способы задания функции, для наших нужд этих способов вполне достаточно. Аналитическийграфическийтабличный На самом деле в математике имеется довольно много различных способов задания функции и один из них – словесный, который используется в весьма своеобразных ситуациях.


Словесный способ задания функции Функция может быть задана и словесно, т. е. описательно. Например, так называемая функция Дирихле задается следующим образом: функция у равна 0 для всех рациональных и 1 для всех иррациональных значений аргумента х. Такая функция не может быть задана таблицей, так как она определяется на всей числовой оси и множество значений ее аргумента бесконечно. Графически данная функция также не может быть задана. Аналитическое выражение для этой функции было, все же найдено, но оно так сложно, что не имеет практического значения. Словесный же способ дает краткое и ясное ее определение.


Пример 1 Функция y = f (x) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х 0 ставится в соответствии первый знак после запятой в десятичной записи числа x. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой – цифра 5); если х = 13,002, то f(х) = 0; если х = 2/3, то, записав 2/3 в виде бесконечной десятичной дроби 0,6666…, находим f(x) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000…, и мы видим, что первый десятичный знак после запятой есть 0 (вообще – то верно равенство 15 = 14,999…, но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).


Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное число значений первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. D (f) = . = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" class="link_thumb"> 7 Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1 x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1"> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [">


Из всех указанных способов задания функции наибольшие возможности для применения аппарата математического анализа дает аналитический способ, а н нн наибольшей наглядностью обладает г гг графический. Вот почему математический анализ основывается на глубоком синтезе аналитических и геометрических методов. Исследование функций, заданных аналитически, проводится гораздо легче и становится наглядным, если параллельно рассматривать и графики этих функций.





Х у=х


Великий математик - Дирихле В профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды по теории чисел и математическому анализу. В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, установил признак сходимости ряда (т.н. признак Дирихле, 1862), дал (1829) строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике (принцип Дирихле в теории гармонической функции). Дирихле Петер Густав Лежён () Немецкий математик, иностранный чл.-корр. Петербургской АН (с), член Лондонского королевского общества (1855), Парижской АН (1854), Берлинской АН. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой - числа взаимно простые и изучал (1837) закон распределения простых чисел в арифметических прогрессиях, в связи с чем ввел функциональные ряды особого вида (т.н. ряды Дирихле).



Функция и способы ее задания.

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции. Рассмотрим некоторые способы задания функций.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа - основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и q принадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.

Функции могут быть заданы самыми различными способами. Однако, наиболее часто встречаются следующие три способа задания функций: аналитический, табличный и графический.

Аналитический способ задания функции. При аналитическом способе задания функция определяется с помощью аналитического выражения, т. е. с помощью формулы, указывающей, какие действия надо совершить над значением аргумента, чтобы получить соответствующее значение функции.

В п. 2 и 3 мы уже встречались с функциями, заданными с помощью формул, т. е. аналитически. При этом в п. 2 для функции область определения ) была установлена, исходя из геометрических соображений, а для функции область задания была указана в условии. В п. 3 для функции область определения также задавалась по условию. Однако очень часто функция задается только с помощью аналитического выражения (формулы), без каких-либо дополнительных условий. В таких случаях под областью определения функции мы будем понимать совокупность всех тех значений аргумента, для которых это выражение имеет смысл и приводит к действительным значениям функции.

Пример 1. Найти область определения функции

Решение. Функция задана только формулой, ее область определения не указана и никаких дополнительных условий нет. Поэтому под областью определения этой функции мы должны понимать совокупность всех тех значений аргумента для которых выражение имеет действительные значения. Для этого должно быть . Решая это неравенство, приходим к заключению, что областью определения данной функции является сегмент [-1.1].

Пример 2. Найти область определения функции .

Решение. Область определения, очевидно, состоит из двух бесконечных интервалов , так как выражение не и имеет смысла при а при всех остальных значениях определено.

Читатель теперь сам легко увидит, что для функции областью определения будет вся числовая ось, а для функции - бесконечный интервал

Следует обратить внимание на то, что нельзя отождествлять функцию и формулу, с помощью которой задается эта функция. Посредством одной и той же формулы можно задать различные функции. В самом деле, в п. 2 мы рассматривали функцию с областью определения в п. 3 строился график для функции с областью определения . И, наконец, только что мы рассмотрели функцию, заданную только формулой без каких-либо дополнительных условий. Областью определения этой функции является вся числовая ось. Эти три функции различны между собой, так как они имеют разные области определения. Но задаются они с помощью одной и той же формулы.

Возможен и обратный случай, когда одна функция на различных участках ее области определения задается различными формулами. Например, рассмотрим функцию у, определенную для всех неотрицательных значений следующим образом: при при т. е.

Эта функция определена двумя аналитическими выражениями, действующими на различных участках ее области определения. График данной функции изображен на рис. 18.

Табличный способ задания функции. При табличном задании функции составляется таблица, в которой указывается ряд значений аргумента и соответствующих значений функции. Широко известны логарифмические таблицы, таблицы значений тригонометрических функций и многие другие. Довольно часто приходится пользоваться таблицами значений функций, полученных непосредственно из опыта. В нижеследующей таблице приведены полученные из опыта удельные сопротивления меди (в см - сантиметрах) при различных температурах t (в градусах):

Графический способ задания функции. При графическом задании дается график функции, и ее значения, соответствующие тем или иным значениям аргумента, непосредственно находятся из этого графика. Во многих случаях такие графики чертятся с помощью самопишущих приборов.