Расстояние между молекулами в газах, жидкостях и твердых телах. В каком состоянии Соотношение расстояния между частицами и их размерами

В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объёма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объём. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа .

Движение молекул в жидкостях

В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации ) и обозначается буквой?. Иными словами, время релаксации – это время колебаний около одного определённого положения равновесия. При комнатной температуре это время составляет в среднем 10 -11 с. Время одного колебания составляет 10 -12 …10 -13 с.

Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объёму.

Жидкости, как и твёрдые тела, сохраняют свой объём, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть . Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а её физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 – 1952).

Движение молекул в твёрдых телах

Молекулы и атомы твёрдого тела расположены в определённом порядке и образуют кристаллическую решётку . Такие твёрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твёрдые тела в обычных условиях сохраняют объём и имеют собственную форму.

Физика. Молекулы. Расположение молекул в газообразном, жидком и твердом расстоянии.



  1. В газообразном состоянии молекулы не связаны друг с другом, находятся на большом расстоянии друг от друга. Движение Броуновское. Газ может быть относительно легко сжат.
    В жидком - молекулы близко друг к другу, колеблются вместе. Сжатию почти не поддаются.
    В тврдом - молекулы расположены в строгом порядке (в кристаллических рештках), всякое движение молекул отсутствует. Сжатию не поддатся.
  2. Строение вещества и начала химии:
    http://samlib.ru/a/anemow_e_m/aa0.shtml
    (без регистрации и SMS-сообщений, в удобном текстовом формате: можно использовать Ctrl+C)
  3. Никак нельзя согласиться с тем, что в твердом состоянии молекулы не движутся.

    Движение молекул в газах

    В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объм. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа.

    Движение молекул в жидкостях

    В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации) и обозначается буквой?. Иными словами, время релаксации это время колебаний около одного определнного положения равновесия. При комнатной температуре это время составляет в среднем 10-11 с. Время одного колебания составляет 10-1210-13 с.

    Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объму.

    Жидкости, как и тврдые тела, сохраняют свой объм, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть. Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а е физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 1952).

    Движение молекул в тврдых телах

    Молекулы и атомы тврдого тела расположены в определнном порядке и образуют кристаллическую рештку. Такие тврдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому тврдые тела в обычных условиях сохраняют объм и имеют собственную форм

  4. В газообразном-движутся рандомно, врубаются
    В жидком-движутся в соответствии друг с другом
    В твердом - не движутся.

Это расстояние можно оценить, зная плотность вещества и молярную массу. Концентрация – число частиц в единице объема, связана с плотностью, молярной массой и числом Авогадро соотношением:

где - плотность вещества.

Величина, обратная концентрации, - - есть объем, приходящийся на одну частицу, а расстояние между частицами, таким образом, расстояние между частицами:

Для жидкостей и твердых тел плотность слабо зависит от температуры и давления, поэтому является практически постоянной величиной и примерно равна, т.е. расстояние между молекулами порядка размеров самих молекул.

Плотность газа сильно зависит от давления и температуры. При нормальных условиях (давление, температура 273 К) плотность воздуха составляет примерно 1кг/м 3 , молярная масса воздуха 0,029 кг/моль, тогда оценка по формуле (5.6) дает значение. Таким образом, в газах расстояние между молекулами много больше размеров самих молекул.

Конец работы -

Эта тема принадлежит разделу:

Физика

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. оренбургский государственный институт менеджмента..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физические основы нерелятивистской механики
Механика изучает механическое движение. Механическим движением называется изменение положения тел или частей тел относительно других тел или частей тел.

Кинематика материальной точки. Кинематика твердого тела
Способы задания движения материальной точки в кинематике. Основные кинематические параметры: траектория, путь, перемещение, скорость, нормальное, тангенциальное и полное ускорени

Динамика материальной точки и поступательного движения твердого тела
Инертность тел. Масса. Импульс. Взаимодействие тел. Сила. Законы Ньютона. Виды сил в механике. Силы тяготения. Реакция опоры и вес. Сила упругости. Сила трения. Деформация упругих твердых тел. О

Динамика вращательного движения
Основное уравнение динамики вращательного движения абсолютно твердого тела. Момент силы. Момент импульса относительно точки и оси. Момент инерции твердого тела относительно главн

Законы сохранения и изменения импульса и момента импульса в механике
Системы тел. Любой набор тел именуется системой тел. Если на тела, входящие в систему, не действуют другие тела, не входящие

Работа и мощность в механике
Работа и мощность силы и момента сил. ; ; ; ; ; Механическая работа и потенциальная энер

Энергетика ЛГО
Движение в любой потенциальной яме есть колебательное движение (рис. 2.1.1). Рисунок 2.1.1. Колебательное движение в потенциальной яме

Пружинный маятник
Закон сохранения и превращения энергии колебаний пружинного маятника (рис. 2.1.2): ЕРmax = ЕР + EK =

Физический маятник
Закон сохранения и превращения энергии колебаний физического маятника (рис. 2.1.3): Рис. 2.1.3. Физический маятник: О – точка

Физический маятник
Уравнение основного закона динамики вращательного движения абсолютно твердого тела: .(2.1.33) Так как для физического маятника (рис. 2.1.6) , то.

Пружинный и физический (математический) маятники
Для произвольных колебательных систем дифференциальное уравнение собственных колебаний имеет вид: .(2.1.43) Зависимость смещения от времени (рис. 2.1.7)

Сложение колебаний
Сложение колебаний одинакового направления Рассмотрим сложение двух гармонических колебаний и одинаковой частоты. Смещение х колеблю­щегося тела будет суммой смещений xl

Режимы затухания
β < ω0 – квазипериодический колебательный режим (рис. 2.2.2). Рис. 2.2.2. График затухающих колебаний

Параметры затухающих колебаний
коэффициент затухания b Если за некоторое время te амплитуда колебаний уменьшается в e раз, то. тогда, а, след

Пружинный маятник
В соответствии со вторым законом Ньютона: , (2.2.17) где (2.2.18) – внешняя периодическая сила, действующая на пружинный маятник.

Процесс установления вынужденных незатухающих колебаний
Процесс установления вынужденных незатухающих колебаний можно представить как процесс сложения двух колебаний: 1. затухающих колебаний (рис. 2.2.8); ; &nb

Основы специальной теории относительности
Основы специальной теории относительности. Преобразования координат и времени (1) При t = t’ = 0 начала координат обеих систем совпадают: x0

Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда
В природе имеется два рода электрических зарядов, условно названных положительными и отрицательными. Исторически положительными принято называть заря

Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел
Закон взаимодействия электрических зарядов был установлен в 1785 г. Шарлем Кулоном (Coulomb Sh., 1736-1806). Кулон измерял силу взаимодействия двух небольших заряженных шариков в зависимости от вел

Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей
Взаимодействие электрических зарядов осуществляется через особый вид материи, порождаемой заряженными частицами - электрическое поле. Электрические заряды изменяют свойства

Основные уравнения электростатики в вакууме. Поток вектора напряженности электрического поля. Теорема Гаусса
По определению потоком векторного поля через площадку называется величина (рис.2.1) Рис.2.1. К определению потока вектора.

Применение теоремы Гаусса для расчета электрических полей
В ряде случаев теорема Гаусса позволяет найти напряженность электрического поля протяженных заряженных тел, не прибегая к вычислению громоздких интегралов. Обычно это относится к телам, чья геометр

Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля
Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной. Напомним, что центральн

Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля
Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа с

Потенциалы простейших электрических полей
Из соотношения, определяющего связь между напряженностью и потенциалом электрического поля, следует формула для вычисления потенциала поля: где интегрирование производится

Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков
Явление возникновения электрических зарядов на поверхности диэлектриков в электрическом поле называется поляризацией. Возникающие при этом заряды – поляриз

Вектор поляризации и вектор электрической индукции
Для количественной характеристики поляризации диэлектриков вводят понятие вектора поляризации как полного (суммарного) дипольного момента всех молекул в единице объема диэле

Напряженность электрического поля в диэлектрике
В соответствии с принципом суперпозиции электрическое поле в диэлектрике векторно складывается из внешнего поля и поля поляризационных зарядов (рис.3.11). или по абсолютной величине

Граничные условия для электрического поля
При переходе через границу раздела двух диэлектриков с различными диэлектрическими проницаемостями ε1 и ε2 (рис.3.12) необходимо учитывать граничные ус

Электроемкость проводников. Конденсаторы
Заряд q, сообщенный уединенному проводнику создает вокруг него электрическое поле, напряженность которого пропорциональна величине заряда. Потенциал поля φ, в свою очередь, связа

Вычисление емкости простых конденсаторов
Согласно определению, емкость конденсатора: , где (интеграл берется вдоль силовой линии поля между обкладками конденсатора). Следовательно, общая формула для вычисления е

Энергия системы неподвижных точечных зарядов
Как мы уже знаем, силы с которыми взаимодействуют заряженные тела, являются потенциальными. Следовательно, система заряженных тел обладает потенциальной энергией. Когда заряды удалены

Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током
Всякое упорядоченное движение зарядов называется электрическим током. Носителями заряда в проводящих средах могут быть электроны, ионы, «дырки» и даже макроскопически

Закон Ома для однородного участка цепи. Сопротивление проводников
Между падением потенциала - напряжением U и силой тока в проводнике I существует функциональная зависимость, называемая вольтампернойхарактеристикой данного п


Для протекания электрического тока в проводнике необходимо, чтобы на его концах поддерживалась разность потенциалов. Очевидно, для этой цели не может быть использован заряженный конденсатор. Действ

Разветвленные цепи. Правила Кирхгофа
Электрическая цепь, содержащая в себе узлы, называется разветвленной. Узел – место в цепи, где сходятся три или более проводников (рис.5.14).

Соединение сопротивлений
Соединение сопротивлений бывает последовательным, параллельным и смешанным. 1) Последовательное соединение. При последовательном соединении ток, текущий через все со


Перемещая электрические заряды по замкнутой цепи, источник тока совершает работу. Различаютполезную и полную работу источника тока.

Взаимодействие проводников с током. Закон Ампера
Известно, что постоянный магнит оказывает действие на проводник с током (например, рамку с током); известно также обратное явление – проводник с током оказывает действие на постоянный магнит (напри

Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей
Движущиеся электрические заряды (токи) изменяют свойства окружающего их пространства – создают в нем магнитное поле. Это поле проявляется в том, что на помещенные в нем пров

Контур с током в магнитном поле. Магнитный момент тока
Мо многих случаях приходится иметь дело с замкнутыми токами, размеры которых малы по сравнению с расстоянием от них до точки наблюдения. Такие токи будем называть элементарным

Магнитное поле на оси кругового витка с током
Согласно закону Био-Савара-Лапласа, индукция магнитного поля, создаваемого элементом тока dl на расстоянии r от него есть, где α – угол между элементом тока и радиус-

Момент сил, действующих на контур с током в магнитном поле
Поместим в однородное магнитное поле с индукцией плоский прямоугольный контур (рамку) с током (рис.9.2).

Энергия контура с током в магнитном поле
Контур с током, помещенный в магнитное поле, обладает запасом энергии. Действительно, чтобы повернуть контур с током на некоторый угол в направлении, обратном направлению его поворота в магнитном п

Контур с током в неоднородном магнитном поле
Если контур с током находится в неоднородном магнитном поле (рис.9.4), то на него, помимо вращающего момента, действует также сила, обусловленная наличием градиента магнитного поля. Проекция этой

Работа, совершаемая при перемещении контура с током в магнитном поле
Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле (рис.9.5). Магнитное поле будем считать однородным и направленным под углом

Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля
Потоком вектора через какую-либо поверхность S называется интеграл: , где - проекция вектора на нормаль к поверхности S в данной точке (рис.10.1). Рис.10.1. К

Теорема о циркуляции магнитного поля. Магнитное напряжение
Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл: , где - проекция вектора на направление касательной к линии контура в данной точке. Соответствующи

Магнитное поле соленоида и тороида
Применим полученные результаты для нахождения напряженности магнитного поля на оси прямого длинного соленоида и тороида. 1) Магнитное поле на оси прямого длинного соленоида.

Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Вектор намагничивания
Различные вещества в той или иной степени способны к намагничиванию: то есть под действием магнитного поля, в которое их помещают, приобретать магнитный момент. Одни веществ

Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля. Магнитная восприимчивость и магнитная проницаемость вещества
Намагниченное вещество создает магнитное поле, которое накладывается на внешнее поле (поле в вакууме). Оба поля в сумме дают результирующее магнитное поле с индукцией, причем по

Граничные условия для магнитного поля
При переходе через границу раздела двух магнетиков с различными магнитными проницаемостями μ1 и μ2 силовые линии магнитного поля испытывают п

Магнитные моменты атомов и молекул
Атомы всех веществ состоят из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Каждый движущийся по орбите электрон образует круговой ток силы, – ч

Природа диамагнетизма. Теорема Лармора
Если атом поместить во внешнее магнитное поле с индукцией (рис.12.1), то на электрон, движущийся по орбите, будет действовать вращательный момент сил, стремящийся установить магнитный момент элект

Парамагнетизм. Закон Кюри. Теория Ланжевена
Если магнитный момент атомов отличен от нуля, то вещество оказывается парамагнитным. Внешнее магнитное поле стремится установить магнитные моменты атомов вдоль в то в

Элементы теории ферромагнетизма. Представление об обменных силах и доменной структуре ферромагнетиков. Закон Кюри - Вейсса
Как уже отмечалось ранее, ферромагнетики характеризуются высокой степенью намагничивания и нелинейной зависимостью от. Основная кривая намагничивания ферромагнетика

Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца
Мы уже знаем, что на проводник с током, помещенный в магнитное поле, действует сила Ампера. Но ток в проводнике – есть направленное движение зарядов. Отсюда напрашивается вывод, что сила, де

Движение заряженной частицы в однородном постоянном электрическом поле
В данном случае и сила Лоренца имеет только электрическую составляющую. Уравнением движения частицы в этом случае является: . Рассмотрим две ситуации: а)

Движение заряженной частицы в однородном постоянном магнитном поле
В данном случае и сила Лоренца имеет только магнитную составляющую. Уравнением движения частицы, записанном в декартовой системе координат, в этом случае является: .

Практические применения силы Лоренца. Эффект Холла
К числу одного из известных проявлений силы Лоренца относится эффект, обнаруженный Холлом (Hall E., 1855-1938) в 1880г. _ _ _ _ _ _

Явление электромагнитной индукции. Закон Фарадея и правило Ленца. ЭДС индукции. Электронный механизм возникновения индукционного тока в металлах
Явление электромагнитной индукции было открыто в 1831г. Майклом Фарадеем (Faraday M., 1791-1867), установившим, что в любом замкнутом проводящем контуре при изменении пот

Явление самоиндукции. Индуктивность проводников
При любом изменении тока в проводнике его собственное магнитное поле также изменяется. Вместе с ним изменяется и поток магнитной индукции, пронизывающий поверхность, охваченную контуром проводника.

Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания
При всяком изменении силы тока в каком-либо контуре в нем возникает ЭДС самоиндукции, которая вызывает появление в этом контуре дополнительных токов, называемых экстратокам

Энергия магнитного поля. Плотность энергии
В опыте, схема которого приведена на рис.14.7, после размыкания ключа через гальванометр некоторое время течет убывающий ток. Работа этого тока равна работе сторонних сил, роль которых выполняет ЭД

Сравнение основных теорем электростатики и магнитостатики
До сих пор мы изучали статические электрические и магнитные поля, то есть такие поля, которые создаются неподвижными зарядами и постоянными токами.

Вихревое электрическое поле. Первое уравнение Максвелла
Возникновение индукционного тока в неподвижном проводнике при изменении магнитного потока свидетельствует о появлении в контуре сторонних сил, приводящих в движение заряды. Как мы уже

Гипотеза Максвелла о токе смещения. Взаимопревращаемость электрических и магнитных полей. Третье уравнение Максвелла
Основная идея Максвелла – это идея о взаимопревращаемости электрических и магнитных полей. Максвелл предположил, что не только переменные магнитные поля являются источниками

Дифференциальная форма уравнений Максвелла
1. Применяя теорему Стокса, преобразуем левую часть первого уравнения Максвелла к виду: . Тогда само уравнение можно переписать как, откуда

Замкнутая система уравнений Максвелла. Материальные уравнения
Для замыкания системы уравнений Максвелла необходимо еще указать связь между векторами, и, то есть конкретизировать свойства материальной среды, в которой рассматривается электром

Следствия из уравнений Максвелла. Электромагнитные волны. Скорость света
Рассмотрим некоторые основные следствия, вытекающие из уравнений Максвелла, приведенных в таблице 2. Прежде всего, отметим, что эти уравнения линейные. Отсюда следует, что

Электрический колебательный контур. Формула Томсона
Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить к

Свободные затухающие колебания. Добротность колебательного контура
Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепл

Вынужденные электрические колебания. Метод векторных диаграмм
Если в цепь электрического контура, содержащего емкость, индуктивность и сопротивление, включить источник переменной ЭДС (рис.16.5), то в нем, наряду с собственными затухающими колебаниями,

Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов
Как следует из приведенных формул, при частоте переменной ЭДС ω, равной, амплитудное значение силы тока в колебательном контуре, принимает

Волновое уравнение. Типы и характеристики волн
Процесс распространения колебаний в пространстве называется волновым процессом или просто волной. Волны различной природы (звуковые, упругие,

Электромагнитные волны
Из уравнений Максвелла следует, что если возбудить с помощью зарядов переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений

Энергия и импульс электромагнитной волны. Вектор Пойнтинга
Распространение электромагнитной волны сопровождается переносом энергии и импульса электромагнитного поля. Чтобы убедиться в этом, умножим скалярно первое уравнение Максвелла в диффер

Упругие волны в твердых телах. Аналогия с электромагнитными волнами
Законы распространения упругих волн в твердых телах вытекают из общих уравнений движения однородной упруго деформированной среды: , где ρ

Стоячие волны
При наложении двух встречных волн с одинаковой амплитудой возникают стоячие волны. Возникновение стоячих волн имеет место, например, при отражении волн от преграды. П

Эффект Допплера
При движении источника и(или) приемника звуковых волн относительно среды, в которой распространяется звук, воспринимаемая приемником частота ν, может оказаться о

Молекулярная физика и термодинамика
Введение. Предмет и задачи молекулярной физики. Молекулярная физика изучает состояние и поведение макроскопических объектов при внешних воздействиях (н

Количество вещества
Макроскопическая система должна содержать число частиц сравнимое с числом Авогадро, чтобы ее можно было рассматривать в рамках статистической физики. числом Авогадро называет

Газокинетические параметры
Средняя длина свободного пробега – среднее расстояние, пробегаемое молекулой газа между двумя последовательными столкновениями, определяется формулой: . (4.1.7) В этой форм

Давление идеального газа
Давление газа на стенку сосуда является результатом столкновений с ней молекул газа. Каждая молекула при столкновении передает стенке определенный импульс, следовательно, воздействует на стенку с н

Дискретная случайная величина. Понятие вероятности
Рассмотрим понятие вероятности на простом примере. Пусть в коробке перемешаны белые и черные шары, которые ничем не отличаются друг от друга, кроме цвета. Для простоты буде

Распределение молекул по скоростям
Опыт показывает, что скорости молекул газа, который находится в равновесном состоянии, могут иметь самые разные значения – и очень большие, и близкие к нулю. Скорость молекул мож

Основное уравнение молекулярно-кинетической теории
Средняя кинетическая энергия поступательного движения молекул равна: . (4.2.15) Таким образом, абсолютная температура пропорциональна средней кинетической энергии поступ

Число степеней свободы молекулы
Формула (31) определяет только энергию поступательного движения молекулы. Такой средней кинетической энергией обладают молекулы одноатомного газа. Для многоатомных молекул необходимо учесть вклад в

Внутренняя энергия идеального газа
Внутренняя энергия идеального газа равна суммарной кинетической энергии движения молекул: Внутренняя энергия одного моля идеального газа равна: (4.2.20) Внутрен

Барометрическая формула. Распределение Больцмана
Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа. Если температура воздуха Т и ускорение свободного падения g не меняются с высотой, то давление воздуха Р на высоте

Первое начало термодинамики. Термодинамическая система. Внешние и внутренние параметры. Термодинамический процесс
Слово «термодинамика» произошло от греческих слов термос – теплота, и динамик – сила. Термодинамика возникла как наука о движущих силах, возникающих при тепловых процессах, о закономе

Равновесное состояние. Равновесные процессы
Если все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго, то такое состояние системы называется равновесным, или к

Уравнение Менделеева - Клапейрона
В состоянии термодинамического равновесия все параметры макроскопической системы остаются неизменными сколь угодно долго при неизменных внешних условиях. Эксперимент показывает, что для любы

Внутренняя энергия термодинамической системы
Кроме термодинамических параметров P,V и T термодинамическая система характеризуется некоторой функцией состояния U, которая называется внутренней энергией. Если обозн

Понятие теплоемкости
Согласно первому закону термодинамики, количество тепла dQ, сообщенное системе, идет на изменение ее внутренней энергии dU и работу dA, которую система совершает над внешними т

Текст лекций
Составитель: ГумароваСония Фаритовна Книга выходит в авторской редакции Подп. в печать 00.00.00. формат 60х84 1/16. Бум. о

    Расстояния между молекулами сравнимы с размерами молекул (при нормальных условиях) для

    1. жидкостей, аморфных и кристаллических тел

      газов и жидкостей

      газов, жидкостей и кристаллических тел

    В газах при нормальных условиях среднее расстояние между молекулами

    1. примерно равно диаметру молекулы

      меньше диаметра молекулы

      примерно в 10 раз больше диаметра молекулы

      зависит от температуры газа

    Наименьшая упорядоченность в расположении частиц характерна для

    1. жидкостей

      кристаллических тел

      аморфных тел

    Расстояние между соседними частицами вещества в среднем во много раз превышает размеры самих частиц. Это утверждение соответствует модели

    1. только модели строения газов

      только модели строения аморфных тел

      моделям строения газов и жидкостей

      моделям строения газов, жидкостей и твердых тел

    В процессе перехода воды из жидкого состояния в кристаллическое

    1. увеличивается расстояние между молекулами

      молекулы начинают притягиваться друг к другу

      увеличивается упорядоченность в расположении молекул

      уменьшается расстояние между молекулами

    При постоянном давлении концентрация молекул газа увеличилась в 5 раз, а его масса не изменилась. Средняя кинетическая энергия поступательного движения молекул газа

    1. не изменилась

      увеличилась в 5 раз

      уменьшилась в 5 раз

      увеличилась в корень из пяти раз

    В таблице приведены температуры плавления и кипения некоторых веществ:

вещество

Температура кипения

вещество

Температура плавления

нафталин

Выберите верное утверждение.

    Температура плавления ртути больше температуры кипения эфира

    Температура кипения спирта меньше температуры плавления ртути

    Температура кипения спирта больше температуры плавления нафталина

    Температура кипения эфира меньше температуры плавления нафталина

    Температура твердого тела понизилась на 17 ºС. По абсолютной шкале температур это изменение составило

1) 290 К 2) 256 К 3) 17 К 4) 0 К

9. В сосуде неизменного объема находится идеальный газ в количестве 2 моль. Как надо изменить абсолютную температуру сосуда с газом при выпуске из сосуда 1 моль газа, чтобы давление газа на стенки сосуда увеличилось в 2 раза?

1) увеличить в 2 раза 3) увеличить в 4 раза

2) уменьшить в 2 раза 4) уменьшить в 4 раза

10. При температуре Т и давлении р один моль идеального газа занимает объем V. Каков объем этого же газа, взятого в количестве 2 моль, при давлении 2р и температуре 2Т?

1) 4V 2) 2V 3) V 4) 8V

11. Температура водорода, взятого в количестве 3 моль, в сосуде равна Т. Какова температура кислорода, взятого в количестве 3 моль, в сосуде того же объема и при том же давлении?

1) Т 2) 8Т 3) 24 Т 4) Т/8

12. В сосуде, закрытом поршнем, находится идеальный газ. График зависимости давления газа от температуры при изменениях его состояния представлен на рисунке. Какому состоянию газа соответствует наименьшее значение объема?

1) А 2) В 3) С 4) D

13. В сосуде постоянного объема находится идеальный газ, массу которого изменяют. На диаграмме показан процесс изменения состояния газа. В какой из точек диаграммы масса газа наибольшая?

1) А 2) В 3) С 4) D

14. При одной и той же температуре насыщенный пар в закрытом сосуде отличается от ненасыщенного пара в таком же сосуде

1) давлением

2) скоростью движения молекул

3) средней энергией хаотичного движения молекул

4) отсутствием примеси посторонних газов

15. Какой точке на диаграмме соответствует максимальное давление газа?

    нельзя дать точный ответ

17. Воздушный шар объемом 2500 куб.м с массой оболочки 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. До какой минимальной температуры нужно нагреть воздух в шаре, чтобы шар взлетел вместе с грузом (корзиной и воздухоплавателем) массой 200 кг? Температура окружающего воздуха 7ºС, его плотность 1,2 кг на куб.м. Оболочку шара считать нерастяжимой.

МКТ и термодинамика

МКТ и термодинамика

По данному разделу в каждый вариант было включено пять заданий с выбором

ответа, из которых 4 – базового уровня и 1 – повышенного. По результатам экзамена

усвоенными оказались следующие элементы содержания:

Применение уравнения Менделеева–Клапейрона;

Зависимость давления газа от концентрации молекул и температуры;

Количество теплоты при нагревании и охлаждении (расчет);

Особенности теплопередачи;

Относительная влажность воздуха (расчет);

Работа в термодинамике (график);

Применение уравнения состояния газа.

Среди заданий базового уровня затруднения вызвали следующие вопросы:

1) Изменение внутренней энергии в различных изопроцессах (например, при

изохорном увеличении давления) – 50% выполнения.

2) Графики изопроцессов – 56%.

Пример 5.

Постоянная масса идеального газа участвует в процессе, показанном

на рисунке. Наибольшее давление газа в процессе достигается

1) в точке 1

2) на всем отрезке 1–2

3) в точке 3

4) на всем отрезке 2–3

Ответ: 1

3) Определение влажности воздуха – 50%. Эти задания содержали фотографию

психрометра, по которой необходимо было снять показания сухого и влажного

термометров, а затем определить влажность воздуха, воспользовавшись частью

психрометрической таблицы, приведенной в задании.

4) Применение первого закона термодинамики. Эти задания оказались наиболее

сложными среди заданий базового уровня по данному разделу – 45%. Здесь

необходимо было воспользоваться графиком, определить вид изопроцесса

(использовались либо изотермы, либо изохоры) и в соответствии с этим

определить один из параметров по заданному другому.

Среди заданий повышенного уровня были представлены расчетные задачи на

применение уравнения состояния газа, с которыми справилось в среднем 54%

учащихся, а также использовавшиеся ранее задания на определение изменения

параметров идеального газа в произвольном процессе. С ними успешно справляется

лишь группа сильных выпускников, а средний процент выполнения составил 45%.

Одно из таких заданий приведено ниже.

Пример 6

В сосуде, закрытом поршнем, находится идеальный газ. Процесс

изменения состояния газа показан на диаграмме (см. рисунок). Как

менялся объем газа при его переходе из состояния А в состояние В?

1) все время увеличивался

2) все время уменьшался

3) сначала увеличивался, затем уменьшался

4) сначала уменьшался, затем увеличивался

Ответ: 1

Виды деятельности Кол-во

заданий %

фотографий2 10-12 25,0-30,0

4. ФИЗИКА

4.1. Характеристика контрольных измерительных материалов по физике

2007 года

Экзаменационная работа для единого государственного экзамена в 2007 г. имела

ту же структуру, что и в течение двух предыдущих лет. Она состояла из 40 заданий,

различающихся формой представления и уровнем сложности. В первую часть работы

было включено 30 заданий с выбором ответа, где к каждому заданию приводилось

четыре варианта ответа, из которых верным был только один. Вторая часть содержала 4

задания с кратким ответом. Они представляли собой расчетные задачи, после решения

которых требовалось привести ответ в виде числа. Третья часть экзаменационной

работы – это 6 расчетных задач, к которым необходимо было привести полное

развернутое решение. Общее время выполнения работы составляло 210 минут.

Кодификатор элементов содержания образования и спецификация

экзаменационной работы были составлены на основе Обязательного минимума

1999 г. № 56) и учитывали Федеральный компонент государственного стандарта

среднего (полного) образования по физике, профильный уровень (Приказ МО от 5

марта 2004 г. № 1089). Кодификатор элементов содержания не претерпел изменений по

сравнению с 2006 г. и включал в себя лишь те элементы, которые одновременно

присутствуют как в Федеральном компоненте государственного стандарта

(профильный уровень, 2004 г.), так и в Обязательном минимуме содержания

образования 1999 г.

По сравнению с контрольными измерительными материалами 2006 г. в варианты

ЕГЭ 2007 г. были внесены два изменения. Первое из них состояло в перераспределении

заданий в первой части работы по тематическому признаку. Независимо от сложности

(базовый или повышенный уровни), сначала следовали все задания по механике, затем

по МКТ и термодинамике, электродинамике и, наконец, по квантовой физике. Второе

изменение касалось целенаправленного введения заданий, проверяющих

сформированность методологических умений. В 2007 г. задания А30 проверяли умения

анализировать результаты экспериментальных исследований, выраженных в виде

таблицы или графика, а также строить графики по результатам эксперимента. Подбор

заданий для линии А30 осуществлялся исходя из необходимости проверки в данной

серии вариантов одного вида деятельности и, соответственно, независимо от

тематической принадлежности конкретного задания.

В экзаменационной работе были представлены задания базового, повышенного

и высокого уровней сложности. Задания базового уровня проверяли усвоение наиболее

важных физических понятий и законов. Задания повышенного уровня контролировали

умение использовать эти понятия и законы для анализа более сложных процессов или

умение решать задачи на применение одного-двух законов (формул) по какой-либо из

тем школьного курса физики. Задания высокого уровня сложности - это расчетные

задачи, которые отражают уровень требований к вступительным экзаменам в вузы и

требуют применения знаний сразу из двух-трех разделов физики в измененной или

новой ситуации.

В КИМ 2007 г. были включены задания по всем основным содержательным

разделам курса физики:

1) «Механика» (кинематика, динамика, статика, законы сохранения в механике,

механические колебания и волны);

2) «Молекулярная физика. Термодинамика»;

3) «Электродинамика» (электростатика, постоянный ток, магнитное поле,

электромагнитная индукция, электромагнитные колебания и волны, оптика);

4) «Квантовая физика» (элементы СТО, корпускулярно-волновой дуализм, физика

атома, физика атомного ядра).

В таблице 4.1 показано распределение заданий по блокам содержания в каждой

из частей экзаменационной работы.

Таблица 4.1

в зависимости от типа заданий

Вся работа

(с выбором

(с кратким

заданий % Кол-во

заданий % Кол-во

заданий %

1 Механика 11-131 27,5-32,5 9-10 22,5-25,0 1 2,5 1-2 2,5-5,0

2 МКТ и термодинамика 8-10 20,0-25,0 6-7 15,0-17,5 1 2,5 1-2 2,5-5,0

3 Электродинамика 12-14 30,0-35,5 9-10 22,5-15,0 2 5,0 2-3 5,0-7,5

4 Квантовая физика и

СТО 6-8 15,0-20,0 5-6 12,5-15,0 – – 1-2 2,5-5,0

В таблице 4.2 показано распределение заданий по блокам содержания в

зависимости от уровня сложности.

Таблица 4.2

Распределение заданий по разделам курса физики

в зависимости от уровня сложности

Вся работа

Базовый уровень

(с выбором

Повышенный

(с выбором ответа

и кратким

Высокий уровень

(с развернутым

Раздел ответом)

заданий % Кол-во

заданий % Кол-во

заданий % Кол-во

заданий %

1 Механика 11-13 27,5-32,5 7-8 17,5-20,0 3 7,5 1-2 2,5-5,0

2 МКТ и термодинамика 8-10 20,0-25,0 5-6 12,5-15,0 2 5,0 1-2 2,5-5,0

3 Электродинамика 12-14 30,0-35,5 7-8 17,5-20,0 4 10,0 2-3 5,0-7,5

4 Квантовая физика и

СТО 6-8 15,0-20,0 4-5 10,0-12,5 1 2,5 1-2 2,5-5,0

При разработке содержания экзаменационной работы учитывалась

необходимость проверки овладения различными видами деятельности. При этом

задания каждой из серии вариантов подбирались с учетом распределения по видам

деятельности, представленном в таблице 4.3.

1 Изменение числа заданий по каждой из тем связано с различной тематикой комплексных задач С6 и

заданий А30, проверяющих методологические умения на материале разных разделов физики, в

различных сериях вариантов.

Таблица 4.3

Распределение заданий по видам деятельности

Виды деятельности Кол-во

заданий %

1 Понимать физический смысл моделей, понятий, величин 4-5 10,0-12,5

2 Объяснять физические явления, различать влияние различных

факторов на протекание явлений, проявления явлений в природе или

их использования в технических устройствах и повседневной жизни

3 Применять законы физики (формулы) для анализа процессов на

качественном уровне 6-8 15,0-20,0

4 Применять законы физики (формулы) для анализа процессов на

расчетном уровне 10-12 25,0-30,0

5 Анализировать результаты экспериментальных исследований 1-2 2,5-5,0

6 Анализировать сведения, получаемые из графиков, таблиц, схем,

фотографий2 10-12 25,0-30,0

7 Решать задачи различного уровня сложности 13-14 32,5-35,0

Все задания первой и второй частей экзаменационной работы оценивались в 1

первичный балл. Решения задач третьей части (С1-С6) проверялись двумя экспертами в

соответствии с обобщенными критериями оценивания, с учетом правильности и

полноты ответа. Максимальный балл за все задания с развернутым ответом составлял 3

балла. Задача считалась решенной, если учащийся набрал за нее не менее 2-х баллов.

На основе баллов, выставленных за выполнение всех заданий экзаменационной

работы, осуществлялся перевод в «тестовые» баллы по 100-балльной шкале и в отметки

по пятибалльной шкале. В таблице 4.4 отражены соотношения между первичными,

тестовыми отметками по пятибалльной системе в течение последних трех лет.

Таблица 4.4

Соотношение первичных баллов , тестовых баллов и школьных отметок

Годы, баллы 2 3 4 5

2007 первичные 0-11 12-22 23-35 36-52

тестовые 0-32 33-51 52-68 69-100

2006 первичные 0-9 10-19 20-33 34-52

тестовые 0-34 35-51 52-69 70-100

2005 первичные 0-10 11-20 21-35 36-52

тестовые 0-33 34-50 51-67 68-100

Сравнение границ первичных баллов показывает, что в этом году условия

получения соответствующих отметок были более строгими по сравнению с 2006 г., но

примерно соответствовали условиям 2005 г. Это было связано с тем, что в прошлом

году единый экзамен по физике сдавали не только те, кто собирался поступать в вузы

по соответствующему профилю, но и почти 20% учащихся (от общего числа сдающих),

которые изучали физику на базовом уровне (для них этот экзамен был по решению

региона обязательным).

Всего для проведения экзамена в 2007 г. было подготовлено 40 вариантов,

которые представляли собой пять серий по 8 вариантов, созданных по разным планам.

Серии вариантов различались контролируемыми элементами содержания и видами

деятельности для одной и той же линии заданий, но в целом все они имели примерно

2 В этом случае имеется в виду форма представления информации в тексте задания или дистракторах,

поэтому одно и то же задание может проверять два вида деятельности.

одинаковый средний уровень сложности и соответствовали плану экзаменационной

работы, приведенному в Приложении 4.1.

4.2. Характеристика участников ЕГЭ по физике 2007 года

Число участников ЕГЭ по физике в этом году составило 70 052 человека, что

существенно ниже, чем в предыдущем году, и примерно соответствует показателям

2005 г. (см. таблицу 4.5). Число регионов, в которых выпускники сдавали ЕГЭ по

физике, увеличилось до 65. Количество выпускников, выбравших физику в формате

ЕГЭ, существенно отличается для разных регионов: от 5316 чел. в Республике

Татарстан до 51 чел. в Ненецком автономном округе. В процентном отношении к

общему числу выпускников количество участников ЕГЭ по физике колеблется от

0,34% в г. Москве до 19,1% в Самарской области.

Таблица 4.5

Число участников экзамена

Год Число Девушки Юноши

регионов

участников Число % Число %

2005 54 68 916 18 006 26,1 50 910 73,9

2006 61 90 3893 29 266 32,4 61 123 67,6

2007 65 70 052 17 076 24,4 52 976 75,6

Экзамен по физике выбирают преимущественно юноши, и лишь четверть от

общего числа участников составляют девушки, выбравшие для продолжения

образования вузы физико-технического профиля.

Практически не меняется год от года и распределение участников экзамена по

типам населенных пунктов (см. таблицу 4.6). Почти половина выпускников, сдававших

ЕГЭ по физике, живет в крупных городах и лишь 20% – это учащиеся, закончившие

сельские школы.

Таблица 4.6

Распределение участников экзамена по типам населенных пунктов , в которых

расположены их образовательные учреждения

Число экзаменуемых Процент

Тип населенного пункта экзаменуемых

Населенный пункт сельского типа (село,

деревня, хутор и пр.) 13 767 18 107 14 281 20,0 20,0 20,4

Населенный пункт городского типа

(рабочий поселок, поселок городского

типа и пр.)

4 780 8 325 4 805 6,9 9,2 6,9

Город с населением менее 50 тыс. человек 7 427 10 810 7 965 10,8 12,0 11,4

Город с населением 50-100 тыс. человек 6 063 8 757 7 088 8,8 9,7 10,1

Город с населением 100-450 тыс. человек 16 195 17 673 14 630 23,5 19,5 20,9

Город с населением 450-680 тыс. человек 7 679 11799 7 210 11,1 13,1 10,3

Город с населением более 680 тыс.

человек 13 005 14 283 13 807 18,9 15,8 19,7

г. Санкт-Петербург – 72 7 – 0,1 0,01

г. Москва – 224 259 – 0,2 0,3

Нет данных – 339 – – 0,4 –

Всего 68 916 90 389 70 052 100% 100% 100%

3 В 2006 г. в одном из регионов вступительные экзамены в вузы по физике проводились только в

формате ЕГЭ. Это повлекло за собой столь существенный рост числа участников ЕГЭ.

Практически не меняется состав участников экзамена по типам образовательных

учреждений (см. таблицу 4.7). Как и в прошлом году, подавляющее большинство

тестируемых заканчивали общеобразовательные учреждения, и лишь около 2%

выпускников пришли на экзамен из образовательных учреждений начального или

среднего профессионального образования.

Таблица 4.7

Распределение участников экзамена по типам образовательных учреждений

Число

экзаменуемых

Процент

Тип образовательного учреждения экзаменуемых

2006 г . 2007 г . 2006 г . 2007 г .

Общеобразовательные учреждения 86 331 66 849 95,5 95,4

Вечерние (сменные) общеобразовательные

учреждения 487 369 0,5 0,5

Общеобразовательная школа-интернат,

кадетская школа, школа-интернат с

первоначальной лётной подготовкой

1 144 1 369 1,3 2,0

Образовательные учреждения начального и

среднего профессионального образования 1 469 1 333 1,7 1,9

Нет данных 958 132 1,0 0,2

Итого: 90 389 70 052 100% 100%

4.3. Основные результаты выполнения экзаменационной работы по физике

В целом результаты выполнения экзаменационной работы в 2007 г. оказались

несколько выше результатов прошлого года, но примерно на том же уровне, что и

показатели позапрошлого года. В таблице 4.8 приведены итоги ЕГЭ по физике в 2007 г.

по пятибалльной шкале, а в таблице 4.9 и на рис. 4.1 – по тестовым баллам в 100-

балльной шкале. Для наглядности сравнения результаты представлены в сравнении с

предыдущими двумя годами.

Таблица 4.8

Распределение участников экзамена по уровню

подготовки (процент от общего числа )

Годы «2» Отметки« п3о» 5-ти балл«ь4н»о й шкале «5»

2005 10,5% 40,7% 38,1% 10,7%

2006 16,0% 41,4% 31,1% 11,5%

2007 12,3% 43,2% 32,5% 12,0%

Таблица 4.9

Распределение участников экзамена

по полученным тестовым баллам в 2005-2007 гг .

Год Интервал шкалы тестовых баллов

мена 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

2005 0,09% 0,57% 6,69% 19,62% 24,27% 24,44% 16,45% 6,34% 1,03% 0,50% 68 916

2006 0,10% 0,19% 6,91% 23,65% 23,28% 19,98% 15,74% 7,21% 2,26% 0,68% 90 389

2007 0,07% 1,09% 7,80% 19,13% 27,44% 20,60% 14,82% 6,76% 1,74% 0,55% 70 052

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Тестовый балл

Процент учащихся, получивших

соответствующий тестовый балл

Рис . 4.1 Распределение участников экзамена по полученным тестовым баллам

В таблице 4.10 приведено сравнение шкалы в тестовых баллах в 100-балльной

шкале с результатами выполнения заданий экзаменационного варианта в первичных

Таблица 4.10

Сравнение интервалов первичных и тестовых баллов в 2007 году

Интервал шкалы

тестовых баллов 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Интервал шкалы

первичных баллов 0-3 4-6 7-10 11-15 16-22 23-29 30-37 38-44 45-48 49-52

Для получения 35 баллов (оценка 3, первичный балл – 13) тестируемому

достаточно было правильно ответить на 13 самых простых вопросов первой части

работы. Чтобы набрать 65 баллов (оценка 4, первичный балл – 34), выпускник должен

был, например, верно ответить на 25 заданий с выбором ответа, решить три из четырех

задач с кратким ответом, и еще справиться с двумя задачами высокого уровня

сложности. Те, кто получил 85 баллов (оценка 5, первичный балл – 46), практически

идеально выполняли первую и вторую части работы и решали не менее четырех задач

третьей части.

Лучшим из лучших (интервал от 91 до 100 баллов) необходимо не только

свободно ориентироваться во всех вопросах школьного курса физики, но и практически

не допускать даже технических ошибок. Так, для получения 94 баллов (первичный балл

– 49) можно было «не добрать» лишь 3 первичных балла, допустив, например,

арифметические погрешности при решении одной из задач высокого уровня сложности

и ошибиться в ответе на два любых вопроса с выбором ответа.

К сожалению, в этом году не наблюдалось роста числа выпускников, набравших

по результатам ЕГЭ по физике максимально возможный балл. В таблице 4.11

приведено число 100-балльников за последние четыре года.

Таблица 4.11

Количество тестируемых , набравших по результатам экзамена 100 баллов

Год 2004 г. 2005 г. 2006 г. 2007 г.

Число учащихся 6 23 33 28

Лидеры этого года – 27 юношей и лишь одна девушка (Романова А.И. из

Нововоронежской СОШ № 1). Как и в прошлом году, среди выпускников лицея № 153

г. Уфы – сразу два учащихся, набравших по 100 баллов. Таких же результатов (два 100-

балльника) добилась и гимназия № 4 им. А.С. Пушкина в г. Йошкар-Ола.