Показательные уравнения. Исчерпывающее руководство (2019)

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Показательными называются уравнения, в которых неизвестное содержится в показателе степени. Простейшее показательное уравнение имеет вид: а х = а b , где а> 0, а 1, х - неизвестное.

Основные свойства степеней, при помощи которых преобразуются показательные уравнения: а>0, b>0.

При решении показательных уравнений пользуются также следующими свойствами показательной функции: y = a x , a > 0, a1:

Для представления числа в виде степени используют основное логарифмическое тождество: b = , a > 0, a1, b > 0.

Задачи и тесты по теме "Показательные уравнения"

  • Показательные уравнения

    Уроков: 4 Заданий: 21 Тестов: 1

  • Показательные уравнения - Важные темы для повторения ЕГЭ по математике

    Заданий: 14

  • Системы показательных и логарифмических уравнений - Показательная и логарифмическая функции 11 класс

    Уроков: 1 Заданий: 15 Тестов: 1

  • §2.1. Решение показательных уравнений

    Уроков: 1 Заданий: 27

  • §7 Показательные и логарифмические уравнения и неравенства - Раздел 5. Показательная и логарифмическая функции 10 класс

    Уроков: 1 Заданий: 17

Для успешного решения показательных уравнений Вы должны знать основные свойства степеней, свойства показательной функции, основное логарифмическое тождество.

При решении показательных уравнений используют два основных метода:

  1. переход от уравнения a f(x) = a g(x) к уравнению f(x) = g(x);
  2. введение новых прямых.

Примеры.

1. Уравнения, сводящиеся к простейшим. Решаются приведением обеих частей уравнения к степени с одинаковым основанием.

3 x = 9 x – 2 .

Решение:

3 x = (3 2) x – 2 ;
3 x = 3 2x – 4 ;
x = 2x –4;
x = 4.

Ответ: 4.

2. Уравнения, решаемые с помощью вынесения за скобки общего множителя.

Решение:

3 x – 3 x – 2 = 24
3 x – 2 (3 2 – 1) = 24
3 x – 2 × 8 = 24
3 x – 2 = 3
x – 2 = 1
x = 3.

Ответ: 3.

3. Уравнения, решаемые с помощью замены переменной.

Решение:

2 2x + 2 x – 12 = 0
Обозначаем 2 x = у.
y 2 + y – 12 = 0
y 1 = - 4; y 2 = 3.
a) 2 x = - 4.Уравнение не имеет решений, т.к. 2 х > 0.
б) 2 x = 3; 2 x = 2 log 2 3 ; x = log 2 3.

Ответ: log 2 3.

4. Уравнения, содержащие степени с двумя различными (не сводящимися друг к другу) основаниями.

3 × 2 х + 1 - 2 × 5 х – 2 = 5 х + 2 х – 2 .

3× 2 х + 1 – 2 х – 2 = 5 х – 2 × 5 х – 2
2 х – 2 ×23 = 5 х – 2
×23
2 х – 2 = 5 х – 2
(5/2) х– 2 = 1
х – 2 = 0
х = 2.

Ответ: 2.

5. Уравнения, однородные относительно a x и b x .

Общий вид: .

9 x + 4 x = 2,5 × 6 x .

Решение:

3 2x – 2,5 × 2 x × 3 x +2 2x = 0 |: 2 2x > 0
(3/2) 2x – 2,5 × (3/2) x + 1 = 0.
Обозначим (3/2) x = y.
y 2 – 2,5y + 1 = 0,
y 1 = 2; y 2 = ½.

Ответ: log 3/2 2; - log 3/2 2.

Так называются уравнения вида, где неизвестное находится и в показателе и в основании степени.

Можно указать совершенно четкий алгоритм решения уравнении вида. Для этого надо обратить внимание на то, что при а(х) не равном нулю, единице и минус единице равенство степеней с одинаковыми основаниями (будь-то положительными или отрицательными) возможно лишь при условии равенства показателей То - есть все корни уравнения будут корнями уравнения f(x) = g(x) Обратное же утверждение неверно, при а(х) < 0 и дробных значениях f(x) и g(x) выражения а(х) f(x) и

а(х) g(x) теряют смысл. То - есть при переходе от к f(x) = g(x) (при и могут появиться посторонние корни, которые нужно исключить проверкой по исходному уравнению. А случаи а = 0, а = 1, а =-1 надо рассмотреть отдельно.

Итак, для полного решения уравнения рассматриваем случаи:

а(х) = О f(x) и g{x) будут положительными числами, то это решение. В противном случае, нет

а(х) = 1 . Корни этого уравнения являются корнями и исходного уравнения.

а(х) = -1 . Если при значении х, удовлетворяющем этому уравнению, f(x) и g(x) являются целыми числами одинаковой четности (либо оба четные, либо оба нечетные) , то это решение. В противном случае, нет

При и решаем уравнение f(x)= g(x) и подстановкой полученных результатов в исходное уравнение отсекаем посторонние корни.

Примеры решения показательно-степенных уравнений.

Пример №1.

1) x - 3 = 0, x = 3. т.к. 3 > 0, и 3 2 > 0, то x 1 = 3 - это решение.

2) x - 3 = 1, x 2 = 4.

3) x - 3 = -1, x = 2. Оба показателя четные. Это решение x 3 = 1.

4) x - 3 ? 0 и x ? ± 1. x = x 2 , x = 0 или x = 1. При x = 0, (-3) 0 = (-3) 0 -верно это решение x 4 = 0. При x = 1, (-2) 1 = (-2) 1 - верно это решение x 5 = 1.

Ответ: 0, 1, 2, 3, 4.

Пример №2.

По определению арифметического квадратного корня: x - 1 ? 0, x ? 1.

1) x - 1 = 0 или x = 1, = 0, 0 0 это не решение.

2) x - 1 = 1 x 1 = 2.

3) x - 1 = -1 x 2 = 0 не подходит в ОДЗ.

Д = (-2) - 4*1*5 = 4 - 20 = -16 - корней нет.

Что такое показательное уравнение? Примеры.

Итак, показательное уравнение… Новый уникальный экспонат на нашей общей выставке самых разнообразных уравнений!) Как это почти всегда бывает, ключевым словом любого нового математического термина является соответствующее прилагательное, которое его характеризует. Так и тут. Ключевым словом в термине «показательное уравнение» является слово «показательное» . Что оно означает? Это слово означает, что неизвестное (икс) находится в показателях каких-либо степеней. И только там! Это крайне важно.

Например, такие простые уравнения:

3 x +1 = 81

5 x + 5 x +2 = 130

4·2 2 x -17·2 x +4 = 0

Или даже такие монстры:

2 sin x = 0,5

Прошу сразу обратить внимание на одну важную вещь: в основаниях степеней (снизу) – только числа . А вот в показателях степеней (сверху) – самые разнообразные выражения с иксом. Совершенно любые.) Всё от конкретного уравнения зависит. Если, вдруг, в уравнении вылезет икс где-нибудь ещё, помимо показателя (скажем, 3 x = 18+x 2), то такое уравнение будет уже уравнением смешанного типа . Такие уравнения не имеют чётких правил решения. Поэтому в данном уроке мы их рассматривать не будем. На радость ученикам.) Здесь мы будем рассматривать только показательные уравнения в «чистом» виде.

Вообще говоря, даже чистые показательные уравнения чётко решаются далеко не все и не всегда. Но среди всего богатого многообразия показательных уравнений есть определённые типы, которые решать можно и нужно. Вот именно эти типы уравнений мы с вами и рассмотрим. И примеры обязательно порешаем.) Так что устраиваемся поудобнее и – в путь! Как и в компьютерных «стрелялках», наше путешествие будет проходить по уровням.) От элементарного к простому, от простого – к среднему и от среднего - к сложному. По пути вас также будет ждать секретный уровень – приёмы и методы решения нестандартных примеров. Те, о которых вы не прочитаете в большинстве школьных учебников… Ну, а в конце вас, разумеется, ждёт финальный босс в виде домашки.)

Уровень 0. Что такое простейшее показательное уравнение? Решение простейших показательных уравнений.

Для начала рассмотрим какую-нибудь откровенную элементарщину. С чего-то же надо начинать, верно? Например, такое уравнение:

2 х = 2 2

Даже безо всяких теорий, по простой логике и здравому смыслу ясно, что х = 2. Иначе же никак, верно? Никакое другое значение икса не годится… А теперь обратим наш взор на запись решения этого крутого показательного уравнения:

2 х = 2 2

Х = 2

Что же у нас произошло? А произошло следующее. Мы, фактически, взяли и… просто выкинули одинаковые основания (двойки)! Совсем выкинули. И, что радует, попали в яблочко!

Да, действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, то эти числа можно отбросить и просто приравнять показатели степеней. Математика разрешает.) И дальше можно работать уже отдельно с показателями и решать куда более простое уравнение. Здорово, правда?

Вот и ключевая идея решения любого (да-да, именно любого!) показательного уравнения: с помощью тождественных преобразований необходимо добиться того, чтобы слева и справа в уравнении стояли одинаковые числа-основания в различных степенях. А дальше можно смело убрать одинаковые основания и приравнять показатели степеней. И работать с более простым уравнением.

А теперь запоминаем железное правило: убирать одинаковые основания можно тогда и только тогда, когда в уравнении слева и справа числа-основания стоят в гордом одиночестве.

Что значит, в гордом одиночестве? Это значит, безо всяких соседей и коэффициентов. Поясняю.

Например, в уравнении

3·3 x-5 = 3 2 x +1

Тройки убирать нельзя! Почему? Потому что слева у нас стоит не просто одинокая тройка в степени, а произведение 3·3 x-5 . Лишняя тройка мешает: коэффициент, понимаешь.)

То же самое можно сказать и про уравнение

5 3 x = 5 2 x +5 x

Здесь тоже все основания одинаковые – пятёрка. Но справа у нас не одинокая степень пятёрки: там – сумма степеней!

Короче говоря, убирать одинаковые основания мы имеем право лишь тогда, когда наше показательное уравнение выглядит так и только так:

a f ( x ) = a g ( x )

Такой вид показательного уравнения называют простейшим . Или, по-научному, каноническим . И какое бы накрученное уравнение перед нами ни было, мы его, так или иначе, будем сводить именно к такому простейшему (каноническому) виду. Или, в некоторых случаях, к совокупности уравнений такого вида. Тогда наше простейшее уравнение можно в общем виде переписать вот так:

F(x) = g(x)

И всё. Это будет эквивалентным преобразованием. При этом в качестве f(x) и g(x) могут стоять совершенно любые выражения с иксом. Какие угодно.

Возможно, особо любознательный ученик поинтересуется: а с какой такой стати мы вот так легко и просто отбрасываем одинаковые основания слева и справа и приравниваем показатели степеней? Интуиция интуицией, но вдруг, в каком-то уравнении и для какого-то основания данный подход окажется неверным? Всегда ли законно выкидывать одинаковые основания? К сожалению, для строгого математического ответа на этот интересный вопрос нужно довольно глубоко и серьёзно погружаться в общую теорию устройства и поведения функций. А чуть конкретнее – в явление строгой монотонности. В частности, строгой монотонности показательной функции y = a x . Поскольку именно показательная функция и её свойства лежат в основе решения показательных уравнений, да.) Развёрнутый ответ на этот вопрос будет дан в отдельном спецуроке, посвящённом решению сложных нестандартных уравнений с использованием монотонности разных функций.)

Объяснять подробно этот момент сейчас – это лишь выносить мозг среднестатистическому школьнику и отпугивать его раньше времени сухой и грузной теорией. Я этого делать не буду.) Ибо наша основная на данный момент задача – научиться решать показательные уравнения! Самые-самые простые! Посему – пока не паримся и смело выкидываем одинаковые основания. Это можно , поверьте мне на слово!) А дальше уже решаем эквивалентное уравнение f(x) = g(x). Как правило, более простое, чем исходное показательное.

Предполагается, конечно же, что решать хотя бы , и уравнения, уже без иксов в показателях, народ на данный момент уже умеет.) Кто до сих пор не умеет – смело закрывайте эту страницу, гуляйте по соответствующим ссылочкам и восполняйте старые пробелы. Иначе несладко вам придётся, да…

Я уж молчу про иррациональные, тригонометрические и прочие зверские уравнения, которые также могут всплыть в процессе ликвидации оснований. Но не пугайтесь, откровенную жесть в показателях степеней мы с вами пока рассматривать не будем: рано ещё. Будем тренироваться лишь на самых простых уравнениях.)

Теперь рассмотрим уравнения, которые требуют некоторых дополнительных усилий для сведения их к простейшим. Для отличия назовём их простыми показательными уравнениями . Итак, двигаемся на следующий уровень!

Уровень 1. Простые показательные уравнения. Распознаём степени! Натуральные показатели.

Ключевыми правилами в решении любых показательных уравнений являются правила действий со степенями . Без этих знаний и умений ничего не получится. Увы. Так что, если со степенями проблемы, то для начала милости прошу . Кроме того, ещё нам понадобятся . Эти преобразования (целых два!) – основа решения всех уравнений математики вообще. И не только показательных. Так что, кто забыл, тоже прогуляйтесь по ссылочке: я их не просто так ставлю.

Но одних только действий со степенями и тождественных преобразований мало. Необходима ещё личная наблюдательность и смекалка. Нам ведь требуются одинаковые основания, не так ли? Вот и осматриваем пример и ищем их в явном или замаскированном виде!

Например, такое уравнение:

3 2 x – 27 x +2 = 0

Первый взгляд на основания . Они… разные! Тройка и двадцать семь. Но паниковать и впадать в отчаяние рано. Самое время вспомнить, что

27 = 3 3

Числа 3 и 27 – родственнички по степени! Причём близкие.) Стало быть, имеем полное право записать:

27 x +2 = (3 3) x+2

А вот теперь подключаем наши знания о действиях со степенями (а я предупреждал!). Есть там такая очень полезная формулка:

(a m) n = a mn

Если теперь запустить её в ход, то вообще отлично получается:

27 x +2 = (3 3) x+2 = 3 3(x +2)

Исходный пример теперь выглядит вот так:

3 2 x – 3 3(x +2) = 0

Отлично, основания степеней выровнялись. Чего мы и добивались. Полдела сделано.) А вот теперь запускаем в ход базовое тождественное преобразование – переносим 3 3(x +2) вправо. Элементарных действий математики никто не отменял, да.) Получаем:

3 2 x = 3 3(x +2)

Что нам даёт такой вид уравнения? А то, что теперь наше уравнение сведено к каноническому виду : слева и справа стоят одинаковые числа (тройки) в степенях. Причём обе тройки - в гордом одиночестве. Смело убираем тройки и получаем:

2х = 3(х+2)

Решаем это и получаем:

X = -6

Вот и все дела. Это правильный ответ.)

А теперь осмысливаем ход решения. Что нас спасло в этом примере? Нас спасло знание степеней тройки. Как именно? Мы опознали в числе 27 зашифрованную тройку! Этот приёмчик (шифровка одного и того же основания под разными числами) – один из самых популярных в показательных уравнениях! Если только не самый популярный. Да и в тоже, кстати. Именно поэтому в показательных уравнениях так важна наблюдательность и умение распознавать в числах степени других чисел!

Практический совет:

Степени популярных чисел надо знать. В лицо!

Конечно, возвести двойку в седьмую степень или тройку в пятую может каждый. Не в уме, так хотя бы на черновике. Но в показательных уравнениях гораздо чаще надо не возводить в степень, а наоборот - узнавать, какое число и в какой степени скрывается за числом, скажем, 128 или 243. А это уже посложнее, чем простое возведение, согласитесь. Почувствуйте разницу, что называется!

Поскольку умение распознавать степени в лицо пригодится не только на этом уровне, но и на следующих, вот вам небольшое задание:

Определить, какими степенями и каких чисел являются числа:

4; 8; 16; 27; 32; 36; 49; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729; 1024.

Ответы (вразброс, естественно):

27 2 ; 2 10 ; 3 6 ; 7 2 ; 2 6 ; 9 2 ; 3 4 ; 4 3 ; 10 2 ; 2 5 ; 3 5 ; 7 3 ; 16 2 ; 2 7 ; 5 3 ; 2 8 ; 6 2 ; 3 3 ; 2 9 ; 2 4 ; 2 2 ; 4 5 ; 25 2 ; 4 4 ; 6 3 ; 8 2 ; 9 3 .

Да-да! Не удивляйтесь, что ответов побольше, чем заданий. Например, 2 8 , 4 4 и 16 2 – это всё 256.

Уровень 2. Простые показательные уравнения. Распознаём степени! Отрицательные и дробные показатели.

На этом уровне мы уже используем наши знания о степенях на полную катушку. А именно – вовлекаем в сей увлекательный процесс отрицательные и дробные показатели! Да-да! Нам же надо наращивать мощь, верно?

Например, такое страшное уравнение:

Опять первый взгляд – на основания. Основания – разные! Причём на этот раз даже отдалённо не похожие друг на друга! 5 и 0,04… А для ликвидации оснований нужны одинаковые… Что же делать?

Ничего страшного! На самом деле всё то же самое, просто связь между пятёркой и 0,04 визуально просматривается плохо. Как выкрутимся? А перейдём-ка в числе 0,04 к обычной дроби! А там, глядишь, всё и образуется.)

0,04 = 4/100 = 1/25

Ух ты! Оказывается, 0,04 – это 1/25! Ну кто бы мог подумать!)

Ну как? Теперь связь между числами 5 и 1/25 легче углядеть? Вот то-то и оно…

А теперь уже по правилам действий со степенями с отрицательным показателем можно твёрдой рукой записать:

Вот и отлично. Вот мы и добрались до одинакового основания – пятёрки. Заменяем теперь в уравнении неудобное нам число 0,04 на 5 -2 и получаем:

Опять же, по правилам действий со степенями, теперь можно записать:

(5 -2) x -1 = 5 -2(x -1)

На всякий случай, напоминаю (вдруг, кто не в курсе), что базовые правила действий со степенями справедливы для любых показателей! В том числе и для отрицательных.) Так что смело берём и перемножаем показатели (-2) и (х-1) по соответствующему правилу. Наше уравнение становится всё лучше и лучше:

Всё! Кроме одиноких пятёрок в степенях слева и справа больше ничего нет. Уравнение сведено к каноническому виду. А дальше – по накатанной колее. Убираем пятёрки и приравниваем показатели:

x 2 –6 x +5=-2(x -1)

Пример практически решён. Осталась элементарная математика средних классов – раскрываем (правильно!) скобки и собираем всё слева:

x 2 –6 x +5 = -2 x +2

x 2 –4 x +3 = 0

Решаем это и получаем два корня:

x 1 = 1; x 2 = 3

Вот и всё.)

А теперь снова поразмышляем. В данном примере нам вновь пришлось распознать одно и то же число в разной степени! А именно - увидеть в числе 0,04 зашифрованную пятёрку. Причём на этот раз – в отрицательной степени! Как же нам это удалось? С ходу – никак. А вот после перехода от десятичной дроби 0,04 к обыкновенной дроби 1/25 всё и высветилось! И дальше всё решение пошло как по маслу.)

Поэтому очередной зелёный практический совет.

Если в показательном уравнении присутствуют десятичные дроби, то переходим от десятичных дробей к обыкновенным. В обыкновенных дробях гораздо проще распознать степени многих популярных чисел! После распознавания переходим от дробей к степеням с отрицательными показателями.

Имейте в виду, что такой финт в показательных уравнениях встречается очень и очень часто! А человек не в теме. Смотрит он, например, на числа 32 и 0,125 и огорчается. Неведомо ему, что это одна и та же двойка, только в разных степенях… Но вы-то ведь уже в теме!)

Решить уравнение:

Во! На вид – тихий ужас… Однако внешность обманчива. Это простейшее показательное уравнение, несмотря на его устрашающий внешний вид. И сейчас я вам это покажу.)

Во-первых, разбираемся со всеми чиселками, сидящими в основаниях и в коэффициентах. Они, ясное дело, разные, да. Но мы всё же рискнём и попробуем сделать их одинаковыми ! Попробуем добраться до одного и того же числа в разных степенях . Причём, желательно, числа самого возможно малого. Итак, начинаем расшифровку!

Ну, с четвёркой сразу всё ясно – это 2 2 . Так, уже кое-что.)

С дробью 0,25 – пока непонятно. Проверять надо. Используем практический совет – переходим от десятичной дроби к обыкновенной:

0,25 = 25/100 = 1/4

Уже гораздо лучше. Ибо теперь уже отчётливо видно, что 1/4 – это 2 -2 . Отлично, и число 0,25 тоже сроднили с двойкой.)

Пока всё идёт хорошо. Но осталось самое нехорошее число из всех – корень квадратный из двух! А с этим перцем что делать? Можно ли его тоже представить как степень двойки? А кто ж его знает…

Что ж, снова лезем в нашу сокровищницу знаний о степенях! На этот раз дополнительно подключаем наши знания о корнях . Из курса 9-го класса мы с вами должны были вынести, что любой корень, при желании, всегда можно превратить в степень с дробным показателем.

Вот так:

В нашем случае:

Во как! Оказывается, корень квадратный из двух – это 2 1/2 . Вот оно что!

Вот и прекрасно! Все наши неудобные числа на самом деле оказались зашифрованной двойкой.) Не спорю, где-то весьма изощрённо зашифрованной. Но и мы ведь тоже повышаем свой профессионализм в разгадке подобных шифров! А дальше уже всё очевидно. Заменяем в нашем уравнении числа 4, 0,25 и корень из двух на степени двойки:

Всё! Основания всех степеней в примере стали одинаковыми – двойка. А теперь в ход идут стандартные действия со степенями:

a m · a n = a m + n

a m:a n = a m-n

(a m) n = a mn

Для левой части получится:

2 -2 ·(2 2) 5 x -16 = 2 -2+2(5 x -16)

Для правой части будет:

И теперь наше злое уравнение стало выглядеть вот так:

Кто не врубился, как именно получилось это уравнение, то тут вопрос не к показательным уравнениям. Вопрос – к действиям со степенями. Я же просил срочно повторить тем, у кого проблемы!

Вот и финишная прямая! Получен канонический вид показательного уравнения! Ну как? Убедил я вас, что не всё так страшно? ;) Убираем двойки и приравниваем показатели:

Осталось всего лишь решить это линейное уравнение. Как? С помощью тождественных преобразований, вестимо.) Дорешайте, чего уж там! Умножайте обе части на двойку (чтобы убрать дробь 3/2), переносите слагаемые с иксами влево, без иксов вправо, приводите подобные, считайте – и будет вам счастье!

Должно всё получиться красиво:

X = 4

А теперь снова осмысливаем ход решения. В данном примере нас выручил переход от квадратного корня к степени с показателем 1/2 . Причём только такое хитрое преобразование нам помогло везде выйти на одинаковое основание (двойку), которое и спасло положение! И, если бы не оно, то мы бы имели все шансы навсегда зависнуть и так и не справиться с этим примером, да…

Поэтому не пренебрегаем очередным практическим советом:

Если в показательном уравнении присутствуют корни, то переходим от корней к степеням с дробными показателями. Очень часто только такое преобразование и проясняет дальнейшую ситуацию.

Конечно же, отрицательные да дробные степени уже гораздо сложнее натуральных степеней. Хотя бы с точки зрения визуального восприятия и, особенно, распознавания справа налево!

Понятно, что напрямую возвести, например, двойку в степень -3 или же четвёрку в степень -3/2 не такая уж и большая проблема. Для знающих.)

А вот поди, например, с ходу сообрази, что

0,125 = 2 -3

Или

Тут только практика и богатый опыт рулят, да. И, конечно же, чёткое представление, что такое отрицательная и дробная степень. А также – практические советы! Да-да, те самые зелёные .) Надеюсь, что они всё-таки помогут вам лучше ориентироваться во всём разношёрстном многообразии степеней и значительно увеличат ваши шансы на успех! Так что не пренебрегаем ими. Я не зря зелёным цветом пишу иногда.)

Зато, если вы станете на «ты» даже с такими экзотическими степенями, как отрицательные и дробные, то ваши возможности в решении показательных уравнений колоссально расширятся, и вам уже будет по плечу практически любой тип показательных уравнений. Ну, если не любой, то процентов 80 всех показательных уравнений – уж точно! Да-да, я не шучу!

Итак, наша первая часть знакомства с показательными уравнениями подошла к своему логическому завершению. И, в качестве промежуточной тренировки, я традиционно предлагаю немного порешать самостоятельно.)

Задание 1.

Чтобы мои слова о расшифровке отрицательных и дробных степеней не пропали даром, предлагаю сыграть в небольшую игру!

Представьте в виде степени двойки числа:

Ответы (в беспорядке):

Получилось? Отлично! Тогда делаем боевое задание – решаем простейшие и простые показательные уравнения!

Задание 2.

Решить уравнения (все ответы – в беспорядке!):

5 2x-8 = 25

2 5x-4 – 16 x+3 = 0

Ответы:

x = 16

x 1 = -1; x 2 = 2

x = 5

Получилось? Действительно, уж куда проще-то!

Тогда решаем следующую партию:

(2 x +4) x -3 = 0,5 x ·4 x -4

35 1-x = 0,2 - x ·7 x

Ответы:

x 1 = -2; x 2 = 2

x = 0,5

x 1 = 3; x 2 = 5

И эти примеры одной левой? Отлично! Вы растёте! Тогда вот вам на закуску ещё примерчики:

Ответы:

x = 6

x = 13/31

x = -0,75

x 1 = 1; x 2 = 8/3

И это решено? Что ж, респект! Снимаю шляпу.) Значит, урок прошёл не напрасно, и начальный уровень решения показательных уравнений можно считать успешно освоенным. Впереди – следующие уровни и более сложные уравнения! И новые приёмы и подходы. И нестандартные примеры. И новые сюрпризы.) Всё это – в следующем уроке!

Что-то не получилось? Значит, скорее всего, проблемы в . Или в . Или в том и другом сразу. Тут уж я бессилен. Могу в очередной раз предложить лишь одно – не лениться и прогуляться по ссылочкам.)

Продолжение следует.)

Лекция: «Методы решения показательных уравнений».

1 . Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение аx = b, где а > 0, а ≠ 1.

1) При b < 0 и b = 0 это уравнение, согласно свойству 1 показательной функции, не имеет решения.

2) При b > 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = aс, аx = bс ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

2) метод оценки;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

2 . Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

1 . 3x = 81;

Представим правую часть уравнения в виде 81 = 34 и запишем уравнение, равносильное исходному 3 x = 34; x = 4. Ответ: 4.

2. https://pandia.ru/text/80/142/images/image004_8.png" width="52" height="49">и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

3. https://pandia.ru/text/80/142/images/image006_8.png" width="105" height="47">

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5-x-1 = 5-2x-2 ó - x – 1 = - 2x – 2, из которого находим решение x = -1. Ответ: -1.

5. 3x = 5. По определению логарифма x = log35. Ответ: log35.

6. 62x+4 = 33x. 2x+8.

Перепишем уравнение в виде 32x+4.22x+4 = 32x.2x+8, т. е..png" width="181" height="49 src="> Отсюда x – 4 =0, x = 4. Ответ: 4.

7 . 2∙3x+1 - 6∙3x-2 - 3x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3x - 2∙3x – 3x = 9 далее 3∙3x = 9, 3x+1 = 32 , т. е. x+1 = 2, x =1. Ответ: 1.

Банк задач №1.

Решить уравнение:

Тест №1.

1) 0 2) 4 3) -2 4) -4

А2 32x-8 = √3.

1)17/4 2) 17 3) 13/2 4) -17/4

А3

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

А5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

А6

1) -1 2) 0 3) 2 4) 1

Тест №2

А1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

А2

1) 14/3 2) -14/3 3) -17 4) 11

А3

1) 2;-1 2) корней нет 3) 0 4) -2;1

А4

1) -4 2) 2 3) -2 4) -4;2

А5

1) 3 2) -3;1 3) -1 4) -1;3

3 Метод оценки.

Теорема о корне : если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4x = 5 – x.

Решение. Перепишем уравнение в виде 4x +x = 5.

1. если x = 1, то 41+1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

Функция f(x) = 4x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4x = 5 – x. Ответ: 1.

2.

Решение. Перепишем уравнение в виде .

1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.

2. докажем, что он единственный.

3. Функция f(x) = - убывает на R, и g(x) = - x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

а) 4x + 1 =6 – x;

б)

в) 2x – 2 =1 – x;

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Р ешить уравнение: 1. .

Перепишем уравнение иначе: https://pandia.ru/text/80/142/images/image030_0.png" width="128" height="48 src="> т. е..png" width="210" height="45">

Решение. Перепишем уравнение иначе:

Обозначим https://pandia.ru/text/80/142/images/image035_0.png" width="245" height="57"> - не подходит.

t = 4 => https://pandia.ru/text/80/142/images/image037_0.png" width="268" height="51"> - иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

Решение. Перепишем уравнение в виде и разделим его обе части на 56x+6 ≠ 0. Получим уравнение

2x2-6x-7 = 2x2-6x-8 +1 = 2(x2-3x-4)+1, т..png" width="118" height="56">

Корни квадратного уравнения – t1 = 1 и t2 <0, т. е..png" width="200" height="24">.

Решение. Перепишем уравнение в виде

и заметим, что оно является однородным уравнением второй степени.

Разделим уравнение на 42x, получим

Заменим https://pandia.ru/text/80/142/images/image049_0.png" width="16" height="41 src="> .

Ответ: 0; 0,5.

Банк задач № 3. Решить уравнение

б)

г)

Тест № 3 с выбором ответа. Минимальный уровень.

А1

1) -0,2;2 2) log52 3) –log52 4) 2

А2 0,52x – 3 0,5x +2 = 0.

1) 2;1 2) -1;0 3) корней нет 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

А4 52x-5x - 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) корней нет 2) 2;4 3) 3 4) -1;2

Тест № 4 с выбором ответа. Общий уровень.

А1

1) 2;1 2) ½;0 3)2;0 4) 0

А2 2x – (0,5)2x – (0,5)x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

А5

1) 0 2) 1 3) 0;1 4) корней нет

5. Метод разложения на множители.

1. Решите уравнение: 5x+1 - 5x-1 = 24.

Решение..png" width="169" height="69"> , откуда

2. 6x + 6x+1 = 2x + 2x+1 + 2x+2.

Решение. Вынесем за скобки в левой части уравнения 6x, а в правой части – 2x. Получим уравнение 6x(1+6) = 2x(1+2+4) ó 6x = 2x.

Так как 2x >0 при всех x, можно обе части этого уравнения разделить на 2x, не опасаясь при этом потери решений. Получим 3x = 1ó x = 0.

3.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

4. https://pandia.ru/text/80/142/images/image067_0.png" width="500" height="181">

x = -2 – корень уравнения.

Уравнение x + 1 = 0 " style="border-collapse:collapse;border:none">

А1 5x-1 +5x -5x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

А2 3x+1 +3x-1 =270.

1) 2 2) -4 3) 0 4) 4

А3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

А5 2x -2x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

А1 (22x-1)(24x+22x+1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

А2

1) 2,5 2) 3;4 3) log43/2 4) 0

А3 2x-1-3x=3x-1-2x+2.

1) 2 2) -1 3) 3 4) -3

А4

1) 1,5 2) 3 3) 1 4) -4

А5

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т. е. уравнения вида (f(x))g(x) = (f(x))h(x).

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1..png" width="182" height="116 src=">

2.

Решение. x2 +2x-8 – имеет смысл при любых x, т. к. многочлен, значит уравнение равносильно совокупности

https://pandia.ru/text/80/142/images/image078_0.png" width="137" height="35">

б)

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p2–3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2x = t, t > 0, тогда уравнение (1) примет вид t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1)2 > 0, тогда уравнение (2) имеет два различных корня t1 = p, t2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t1 и t2 в системы, имеем

https://pandia.ru/text/80/142/images/image084_0.png" alt="no35_11" width="375" height="54"> в зависимости от параметра a?

Решение. Пусть тогда уравнение (3) примет вид t2 – 6t – a = 0. (4)

Найдем значения параметра a, при которых хотя бы один корень уравнения (4) удовлетворяет условию t > 0.

Введем функцию f(t) = t2 – 6t – a. Возможны следующие случаи.

https://pandia.ru/text/80/142/images/image087.png" alt="http://1september.ru/ru/mat/2002/35/no35_14.gif" align="left" width="215" height="73 src=">где t0 - абсцисса вершины параболы и D - дискриминант квадратного трехчлена f(t);

https://pandia.ru/text/80/142/images/image089.png" alt="http://1september.ru/ru/mat/2002/35/no35_16.gif" align="left" width="60" height="51 src=">

Случай 2. Уравнение (4) имеет единственное положительное решение, если

D = 0, если a = – 9, тогда уравнение (4) примет вид (t – 3)2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) имеет два корня, но один из них не удовлетворяет неравенству t > 0. Это возможно, если

https://pandia.ru/text/80/142/images/image092.png" alt="no35_17" width="267" height="63">

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

При a < – 9 уравнение (3) корней не имеет.

если a < – 9, то корней нет; если – 9 < a < 0, то
если a = – 9, то x = – 1;

если a  0, то

Сравним способы решения уравнений (1) и (3). Отметим, что при решении уравнение (1) было сведено к квадратному уравнению, дискриминант которого - полный квадрат; тем самым корни уравнения (2) сразу были вычислены по формуле корней квадратного уравнения, а далее относительно этих корней были сделаны выводы. Уравнение (3) было сведено к квадратному уравнению (4), дискриминант которого не является полным квадратом, поэтому при решении уравнения (3) целесообразно использовать теоремы о расположении корней квадратного трехчлена и графическую модель. Заметим, что уравнение (4) можно решить, используя теорему Виета.

Решим более сложные уравнения.

Задача 3. Решите уравнение

Решение. ОДЗ: x1, x2.

Введем замену. Пусть 2x = t, t > 0, тогда в результате преобразований уравнение примет вид t2 + 2t – 13 – a = 0. (*)Найдем значения a, при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

https://pandia.ru/text/80/142/images/image098.png" alt="http://1september.ru/ru/mat/2002/35/no35_23.gif" align="left" width="71" height="68 src=">где t0 - абсцисса вершины f(t) = t2 + 2t – 13 – a, D - дискриминант квадратного трехчлена f(t).

https://pandia.ru/text/80/142/images/image100.png" alt="http://1september.ru/ru/mat/2002/35/no35_25.gif" align="left" width="360" height="32 src=">

https://pandia.ru/text/80/142/images/image102.png" alt="http://1september.ru/ru/mat/2002/35/no35_27.gif" align="left" width="218" height="42 src=">

Ответ: если a > – 13, a  11, a  5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев основания образовательной технологии.

2. Гузеев технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев и организационные формы обучения.

4. Гузеев и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев из форм урока – семинара.

Математика в школе №2, 1987 г. с.9 – 11.

6. Селевко образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко способы организации практической работы .

Математика в школе №1, 1993 г. с. 27 – 28.

11. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с.63 – 64.

12. Хазанкин творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави. Издатель, 1997 г.

14. и др. Алгебра и начала анализа. Дидактические материалы для

15. Кривоногов задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов. Справочник для старшеклассников и

поступающих в вузы. «А С Т - пресс школа», 2002 г.

17. Жевняк для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Письменный Д. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг уравнения. «Квант» №3, 1971 г.

23. Волович М. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев за урок, дети! М. Просвещение, 1988 г.

25. Якиманская – ориентированное обучение в школе.

26. Лийметс работа на уроке. М. Знание, 1975 г.