Нахождение числа по 2 5. Проценты

Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.

Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть. Обозначается процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины

Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую составляет масса растворенного вещества от массы всего раствора).

Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.

Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.

Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.

Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.

Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:

\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)

Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить на 100:

\(0,58 = (0,58 \cdot 100)\% = 58\% \) \(0,045 = (0,045 \cdot 100)\% = 4,5\% \)

В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.

Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.

Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.

Задачи на проценты

Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.

В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.

1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):

\(b = a \cdot \frac{p}{100} \)

Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x

2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)

Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на \(\frac{p}{100} \). Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.

3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а затем эту часть выразить в процентах:

\(p = \frac{b}{a} \cdot 100\% \) Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат умножить на 100.
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.

Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.

Нетрудно заметить, что формулы

\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.

Составные задачи на проценты решаются аналогично задачам на дроби.

Простой процентный рост

Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.

Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму, которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить \(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)

Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов. Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)

Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".

Сложный процентный рост

В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.

Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.

10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)

10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)

10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)

Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.

А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.

Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.

Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.

За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)

Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)

Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.

Процент - это одна сотая часть числа. Отсюда следует, что два процента - это две сотых, двадцать процентов - двадцать сотых и так далее.

Слово процент обозначается знаком % . Так, 43% какого либо числа означает 43 процента, то есть этого числа. Однако стоит обратить внимание, что в вычислениях знак % не пишется, он может быть записан в условии задачи и в окончательном результате.

Величина, от которой вычисляются проценты (например, цена, длина, количество конфет и т. д.), составляет 100 своих сотых долей, то есть 100%.

Чтобы найти один процент от числа, надо разделить это число на 100.

Пример 1. Найти один процент от числа 300.

Решение:

Ответ: Один процент от 300 равен 3.

Пример 2. Найти один процент от числа 27,5

Решение:

27,5: 100 = 0,275

Ответ: Один процент от 27,5 равен 0,275.

Нахождение процентов от числа

Чтобы найти некоторое число процентов от данного числа, нужно данное число разделить на 100 и умножить на число процентов.

Задача 1. В том году в магазине к новому году купили 200 ёлок. В этом году количество купленных ёлок увеличилось на 120%. Сколько ёлок купили в этом году?

Решение: Сначала надо найти 120% от 200, для этого 200 надо разделить на 100, так мы найдём 1%, а затем полученный результат умножить на 120:

(200: 100) · 120 = 240

Число 240 - это 120% от 200. Значит, в этом году количество проданных ёлок увеличилось на 240 штук. То есть, количество ёлок, проданных в этом году равно:

200 + 240 = 440 (ёлок)

Ответ: В этом году купили 440 ёлок.

Задача 2. В коробке 28 конфет, 25% конфет с клубничной начинкой. Сколько конфет с клубничной начинкой в коробке?

Решение:

Ответ: В коробке 7 конфет с клубничной начинкой.

Нахождение числа по его процентам

Чтобы найти число по данной величине его процентов, нужно эту величину разделить на число процентов и умножить на 100.

Задача. Цена метра сукна снизилась на 24 руб., что составило 15% цены. Сколько стоил метр сукна до снижения?

Решение:

Ответ: Метр сукна стоил 160 рублей.

Процентное отношение двух чисел

Чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат умножить на 100.

Задача. Завод по годовому плану должен выпустить продукции на сумму 1 250 000 руб. За 1-ый квартал он выпустил её на сумму 450 000 руб. На сколько процентов выполнен заводом годовой план за 1-ый квартал?

Решение:

Ответ: За 1-ый квартал план выполнен на 36%.

Перевод процентов в десятичную дробь

Чтобы перевести проценты в десятичную дробь, надо количество процентов разделить на 100.

Пример 1: Представить 25% в виде десятичной дроби.

Ответ: 25% - это 0,25.

Пример 2: Выразить 100% десятичной дробью.

Ответ: 100% - это 1.

Пример 3: Выразить 230% десятичной дробью.

Ответ: 230% - это 2,3.

Из данных примеров следует, что для перевода процентов в десятичные дроби, надо в числе, стоящем перед знаком %, перенести запятую на два знака влево. .

В процессе решения задач 149–156 надо подвести учащихся к пониманию правила нахождения части числа:

Чтобы найти часть числа, выраженную дробью, можно это число разделить на знаменатель дроби и полученный результат умножить на ее числитель.

Разумеется, это правило учащиеся могут формулировать лишь для конкретных ситуаций: чтобы найти 3 / 4 числа 24, можно это число разделить на знаменатель дроби 4 и полученный результат умножить на числитель 3.

149 . а) На ветке сидели 12 птиц; 2 / 3 их числа улетели. Сколько птиц улетело?

б) В классе 32 учащихся; 3 / 4 всех учащихся каталось на лыжах. Сколько учащихся каталось на лыжах?

150 . а) Велосипедисты за два дня проехали 48 км . В первый день они проехали 2 / 3 всего пути. Сколько километров они проехали во второй день?

б) Некто, имея 350 рублей, потратил 5 / 7 своих денег. Сколько денег у него осталось?

в) В тетради 24 страницы. Девочка исписала 5 / 8 числа всех страниц тетради. Сколько осталось неисписанных страниц?

151 . Старинная задача . Купивши комод за 36 р. , я потом вынужден был продать его за 7 / 12 цены. Сколько рублей я потерял при этой продаже?

152 . Автотуристы за три дня проехали 360 км ; в первый день они проехали 2 / 5 , а во второй день - 3 / 8 всего пути. Сколько километров проехали автотуристы в третий день?

153 . 1) В драмкружке занимаются 24 девочки и несколько мальчиков. Число мальчиков составляет 3 / 8 числа девочек. Сколько учащихся занимается в драмкружке?

2) В коллекции имеется 45 юбилейных рублевых монет. Число 3-х и 5-ти рублевых монет составляет 2 / 9 числа рублевых монет. Сколько всего юбилейных монет в 1, 3 и 5 рублей в коллекции?

Задачи 154–156 учащиеся должны решать, находя сначала указанную часть величины, а потом увеличивая или уменьшая эту величину на найденную часть. Другой способ решения будет показан позже.

154 . 1) Уменьшите 90 рублей на 1 / 10 этой суммы.

2) Увеличьте 80 рублей на 2/5 этой суммы.

155 . В прошлом месяце цена товара составляла 90 р. Теперь она понизилась на 3 / 10 этой суммы. Какова теперь цена товара?

156 . В прошлом месяце зарплата составляла 400 р. Теперь она увеличилась на 2 / 5 этой суммы. Какова теперь зарплата?

В процессе решения задач 157–158 и следующих задач нужно подвести учащихся к пониманию и правильному применению правила нахождения числа по его части:

Чтобы найти число по его части, выраженной дробью, можно эту часть разделить на числитель дроби и полученный результат умножить на ее знаменатель.

Формулировка этого правила сложна из-за необходимости
как-то называть число, которое у нас названо « частью» . Эту трудность вынуждены обходить и авторы учебников. Так в учебнике И.В. Барановой и З.Г. Борчуговой правило формулируется лишь для конкретных случаев: чтобы найти число,
3 / 5 которого составляют 90 км, надо 90 км разделить на числитель дроби 3 и полученный результат умножить на знаменатель дроби 5.

Именно в таком виде им могут пользоваться учащиеся. Правда, говоря о числе, лучше не использовать наименований, так как число и величина не одно и то же. Позднее в том же учебнике на с. 226 формулируется общее правило, в котором применяемому нами термину « часть» соответствует оборот « число, ей соответствующее» , что вряд ли проще .

157 . а) 120 р. составляют 3 / 4 имеющейся суммы денег. Какова эта сумма?

б) Определите длину отрезка, 3 / 5 которого равны 15 см.

158 . а) Сыну 10 лет. Его возраст составляет 2 / 7 возраста отца. Сколько лет отцу?

б) Дочери 12 лет. Ее возраст составляет 2 / 5 возраста матери. Сколько лет матери?

На покупку овощей хозяйка израсходовала 6 р. , что составило 1 / 6 имевшихся у нее денег. Затем она купила 2 кг яблок по 7 р. за килограмм. Сколько денег у нее осталось после этих покупок?

160 . Отец купил сыну костюм за 24 р. , на что израсходовал 1 / 3 своих денег. После этого он купил несколько книг, и у него осталось 39 р. Сколько стоили книги?

161 . Сыну 8 лет, его возраст составляет 2 / 9 возраста отца. А возраст отца составляет 3 / 5 возрастадедушки. Сколько лет дедушке?

162 .* Из папируса Ахмеса (Египет, ок. 2000 г. до н. э.).

Приходит пастух с 70 быками. Его спрашивают:

Сколько приводишь ты из своего многочисленного стада?

Пастух отвечает:

Я привожу две трети от трети скота. Сочти!

Сколько быков в стаде?

«Нахождение числа по его дроби» — Учебник по математике 6 класс (Виленкин)

Краткое описание:


Вы уже умеете находить дробь от числа, а в этом разделе Вы выучите, как находить число по его дроби. Нужно быть очень внимательными, чтобы не запутаться, и все задачки решать быстро и правильно.
Давайте быстро вспомним, как мы находим дробь от числа: мы просто это число умножаем на дробь. Например, нужно найти 3/5 от числа 15. Решаем 3/5 * 15 = 3*15 / 5 =3*3=9. Зачем нам нужно знать, как это делать? Для того, чтобы уметь находить какую-то часть от чего-то целого. Например, зная какую часть книги Вы прочитали и сколько в ней всего страниц, Вы можете найти, сколько страниц осталось прочитать. Запомните, когда мы ищем дробь от числа, у нас есть что-то целое и его часть, и нам нужно это целое умножить на часть, таким образом, мы находим часть в количественном выражении и это число всегда будет меньше начального числа.
В задачах, когда мы ищем число по его дроби, это число всегда должно быть больше, ведь, по сути, мы ищем что-то целое, зная только его часть. Вот, например, Вы прочитали 100 страниц книги, но это только ее третья часть. А сколько всего страниц в книге? Как мы будем искать это число? Зная, что 100 страниц – это треть, нужно 100 * 3 и тогда мы узнаем, сколько страниц всего в книге – 100*3=300. А если попытаться решить через уравнение? Пусть х – общее число страниц в книге, как найти, сколько мы прочитали, нужно х умножить на 1/3 и это будет равно 100. Так – х * 1/3=100. Решаем уравнение дальше – х=100: 1/3, а мы уже выучили, чтобы поделить число на дробь, нужно его умножить на обратную дробь. Получается х=100: 1/3 = 100 * 3/1 = 300. Понятно? Значит, чтобы найти число, зная его дробную часть и ее значение, нам нужно значение (натуральное число) разделить на дробь, то есть умножить на перевернутую дробь и это число всегда будет больше, заданного нам в условии!
Если в задаче дана не дробь, а проценты, что нужно делать? Перевести проценты в десятичную дробь: 40%=0,40; 75%=0,75 и решать дальше по выученной схеме.