Методы намотки тороидальных трансформаторов. Тороидальный трансформатор

Намотать трансформатор своими руками – процесс не столько сложный, сколько длительный, требующий постоянной концентрации внимания.

Тем, кто приступает к такой работе в первый раз, бывает трудно разобраться, какой материал использовать и как проверить готовый прибор. Пошаговая инструкция, представленная ниже, даст новичкам ответы на все вопросы.

Прежде чем приступить непосредственно к намотке, необходимо запастись всеми необходимыми для выполнения работы приспособлениями и инструментами:

Виды и способы, направления намотки обмоток трансформатора представлены на фото:

Изоляция слоев обмотки

В некоторых случаях между проводами требуется вставить прокладки для изоляции. Чаще всего для этого используют конденсаторную или кабельную бумагу.
Середину соседних трансформаторных обмоток следует изолировать сильнее. Для изоляции и выравнивания поверхности под следующий слой обмотки потребуется специальная лакоткань , которую нужно обернуть с обеих сторон бумагой. Если лакоткани не найдется, то решить проблему можно с помощью все той же бумаги, сложенной в несколько слоев.

Бумажные полосы для изоляции должны быть шире обмотки на 2-4 мм.

Для проверки , прежде всего надо определить выводы всех его обмоток. Полезные советы о том, как проверить трансформатор мультиметром на работоспособность, читайте в следующей статье.

Алгоритм действий

  1. Провод с катушкой закрепить в устройстве намотке , а каркас трансформатора – в устройстве намотки. Вращения делать мягкие, умеренные, без срывов.
  2. Провод с катушки опустить на каркас.
  3. Между столом и проводом оставить минимум 20 см , чтобы можно было расположить на столе руку и фиксировать провод. Также на столе должны находиться все сопутствующие материалы: наждачная бумага, ножницы, бумага для изоляции, включенный паяльный инструмент, карандаш или ручка.
  4. Одной рукой плавно вращать намоточное устройство, а второй – фиксировать провод. Необходимо, чтобы провод ложился ровно, виток к витку.
  5. Трансформаторный каркас заизолировать , а выведенный конец провода продеть сквозь каркасное отверстие и ненадолго зафиксировать на оси намоточного устройства.
  6. Намотку следует начинать без спешки: необходимо «набить руку», чтобы получалось укладывать обороты друг рядом с другом.
  7. Нужно следить, чтобы угол провода и натяжение были постоянными. Мотать каждый последующий слой «до упора» не следует, т. к. провода могу соскользнуть и провалиться в каркасные «щечки».
  8. Счетное устройство (если есть) установить на ноль либо внимательно считать витки устно.
  9. Изолирующий материал склеить или прижать мягким кольцом из резины.
  10. Каждый последующий оборот на 1-2 витка делать тоньше предыдущего.

О намотке катушек трансформатора своими руками смотрите в видео-ролике:

Соединение проводов

Если в ходе наматывания произойдет разрыв, то:

  • тонкие провода (тоньше 0,1 мм) скрутить и заварить;
  • концы проводов средней толщины (менее 0,3 мм) следует освободить от изоляционного материала на 1-1.5 см, скрутить и спаять;
  • концы толстых проводов (толще 0,3 мм) нужно немного зачистить и спаять без скрутки;
  • место спайки (сварки) заизолировать.

Важные моменты

Если для намотки используется тонкий провод, то количество витков должно превышать несколько тысяч . Сверху обмотку необходимо защитить бумагой для изоляции или дерматином.

Если трансформатор обмотан толстым проводом, то наружная защита не требуется.

Испытание

После того, как с намоткой будет закончено, необходимо испытать трансформатор в действии , для этого следует подключить к сети его первичную обмотку.

Чтобы проверить прибор на возникновение коротких замыканий, следует последовательно подключить к источнику питания первичную обмотку и лампу.

Степень надежности изоляции проверяется посредством поочередного касания выведенным концом провода каждого выведенного конца сетевой обмотки.

Проводить испытание трансформатора следует очень внимательно и осторожно, дабы не попасть под напряжение повышающей обмотки.

Если неукоснительно следовать предложенной инструкции и не пренебрегать ни одним из пунктов , то намотка трансформатора вручную не будет представлять никаких сложностей, и справиться с ней сможет даже новичок.

Основным элементом блока питания является трансформатор. Иногда его можно приобрести в специализированных магазинах, на радиорынке либо через интернет. Но чаще всего трансформатор с необходимыми параметрами купить не удается. Для изготовления трансформатора самостоятельно вначале нужно определиться с типом железа. Наиболее распространены трансформаторы из Ш-образных пластин. Вместе с тем, трансформаторы на тороидальном железе (бублик из железной ленты) в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин имеют меньший вес и габариты. Также торы отличаются лучшими условиями охлаждения обмоток и повышенным КПД. При равномерном распределении обмоток по периметру тороидального сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформатора. Хотя при построении качественного усилителя экраном пренебрегать не стоит.

Кроме этого, даже на самом лучшем железе при индукции 15000 Гс в тороидальном трансформаторе ток намагничивания имеет форму импульсов с пикфактором 5...50. Это является источником мощных помех с довольно широким спектром. Более-менее синусоидальным ток х.х. становится при индукции менее 6000 Гс для стали 3410 и 8000...9000 Гс для 3425. Пониженная индукция заметно удорожает и утяжеляет трансформатор, что для серийной аппаратуры крайне нежелательно. Однако, для снижения помех в усилителе мощности звуковой частоты имеет смысл идти на снижение индукции в трансформаторе блока питания. В данном случае работает правило - «Чем меньше индукция, тем лучше».

Для расчета параметров тороидального трансформатора очень удобно пользоваться калькулятором. Он позволяет быстро посчитать параметры трансформатора, имея в наличии готовый тор. Для Hi-End УМЗЧ рекомендуется индукцию в сердечнике из российского (советского) железа не выбирать более 1,0 Тл. Для импортного железа (тор из старого ИБП) допустимо 1,2 Тл. В таком случае будет получена низкая магнитная наводка и минимальный акустический шум от трансформатора.

Перед намоткой тороидального трансформатора необходимо подготовить выбранный сердечник: вначале снять фаску полукруглым напильником со всех острых краев бублика, затем по торцу тора обвести карандашом и вырезать из плотной бумаги (открытки) щечки, приклеить щечки на боковинки тора, обклеить внешнюю и внутреннюю сторону сердечника обычной бумагой. Возможны другие варианты изоляции сердечника. Главное предотвратить возможное замыкание первичной обмотки на сердечник трансформатора в результате возможного продавливания изоляции и повреждения лака обмоточного провода на острых краях тора при намотке.



Для намотки тороидального трансформатора я использую челнок из дерева или текстолита на концах которого делаю вырезы в виде ласточкиного хвоста. Челнок легко изготовить из деревянной ученической линейки длиной 20 – 30 см. А чтобы она не треснула вдоль при намотке на нее моточного провода «ласточкин хвост» укрепляется бумажным скотчем (3 – 4 витка в поперек). При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить широко распространенный моточный провод ПЭВ-2 или ПЭТВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента, я же использовал фторопластовую пленку.


После намотки расчетного количества витков первичной обмотки желательно измерить ток холостого хода трансформатора. Для этого подключаем тестер последовательно с первичной обмоткой в режиме амперметра. Для избегания всяких ЧП последовательно с первичкой можно включить лампочку на 220 В и мощностью 40 Вт. Лампочка будет гореть если число витков мало. Если транс намотан правильно, то нить накала должна иметь розовый оттенок. Тороидальный трансформатор имеет большие пусковые токи, в момент запуска перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не через тестер, а при помощи «перемычки», которая потом размыкается и ток начинает течь через тестер.

Для измерения тока холостого хода я использую следующую схему:

Последовательно с первичной обмоткой трансформатора включаю резистор номиналом 10 Ом, подаю напряжение сети и замеряю на нем падение напряжения. Соответственно ток холостого хода равен I=U/R. В моем случае 0,045 В / 10 Ом = 0,0045 А. или 4,5 мА.

Норма тока холостого хода для каждого трансформатора индивидуальна и обычно не превышает 50 мА при напряжении 220 В. Здесь основное правило - «Чем ниже ток х.х., тем лучше», тем форма тока холостого хода больше похожа на синус.

Для тороида в блоке питания УМЗЧ ток х.х.:

  • 20-30 мА - «удовлетворительно»,
  • 10-20 - «хорошо»,
  • меньше 10 мА - «отлично».

Для вычисления количества витков первичной обмотки любым подручным проводом (в моем случае мгтф) наматываю вторичную обмотку, подав сетевое напряжение на первичную обмотку замеряю напряжение на вторичной обмотке.

У меня на 4 витках вторички тестер показывает 0,581 В. Соответственно количество витков первичной обмотки будет равно: U сети х N вторички / U вторички. На момент измерений в сети было 230 В. В цифрах получаем: 230 В х 4 витка / 0,581 В = 1583 витка.

Еще пару слов о намотке трансформатора. В целях максимального уменьшения помех, излучаемых тороидальным трансформатором, необходимо равномерно заполнять моточным проводом каждый слой обмоток. Если первую половину обмотки вы укладывали витки вправо, то вторую половину обмотки витки необходимо укладывать влево, не меняя при этом направление укладки самих витков вокруг сердечника. Если необходимо намотать две одинаковые обмотки (характерно для УМЗЧ) на шпулю сматвается двойной провод, а затем со шпули укладываются витки двух вторичек одновременно, как показано на фото.

В моем случае три слоя первички уложены в одну сторону, и еще три слоя в другую. Выводы первички сделаны как можно ближе друг к другу. Две вторички намотаны аналогично, два слоя укладывались в одну сторону и еще 2 слоя в другую. С соблюдением данных правил мною был изготовлен тороидальный трансформатор мощностью 120 Ват для усилителя Василича с N-канальным выходным каскадом Алексея Никитина, обеспечивший минимальные наводки на входные цепи УМЗЧ.

Буду рад если мой опыт изготовления тороидальных трансформатором будет полезен Вам.

С уважением!

Многие сварщики-любители мечтают о тороидальном трансформаторе. Ведь давно известно, что массогабаритные характеристики у тороидов намного лучше чем у "Ш" и "П"-образных трансформаторов. Так, при тех же характеристиках, тороид в 1,3-1,5 раза меньше. Причина по которой многие не берутся за изготовление такого трансформатора, - это отсутствие железа. Данная статья поможет найти выход из такой ситуации.

Конструкция предполагает изготовление тороидального трансформатора из отслужившего свое промышленного сварочного трансформатора. Для этого он разбирается, и из пластин размером 90X450 мм собирается бублик. Нужная площадь сечения сердечника зависит от количества пластин.

В принципе, пластины можно использовать и от силовых трансформаторов старых ламповых цветных телевизоров. Трансформатор ТС270, ТСА310 раэбирают. П-обраэные сердечники ударом молотка разбивают на пластины, которые на наковальне выправляют.
Для изготовления бублика, необходимо для начала склепать обруч из пластин, внешним диаметром 260 мм. Затем внутрь обруча вставляют первую пластину, придерживая её рукой, чтобы она не раскрутилась, встык к ней вставляют вторую, и так далее, до получения внутреннего диаметра бублика 120 мм. Если бублик делается из трансформаторов ТС270, то диаметр нужно пересчитать для достижения необходимой площади сечения. Можно сделать два бублика и сложить их вместе. В этом случае, внешние и внутренние диаметры бублика можно оставить без изменения.

Края тороида обрабатываются напильником. Из электрокартона изготавливаем два кольца внешним диаметром 270 мм, внутренним 110 мм, и полоску шириной 90 мм. Прикладываем заготовки из электрокартона к бублику и обматываем изолентой на тканной основе, можно обмотать тесьмой от петлей размагничивания кинескопов. Первичная обмотка мотается проводом ПЭВ-2 диаметром 2,0 мм, количество витков для 220 В примерно 170. Это во многом зависит от плотности сборки пластин. Точное количество витком можно проверить экспериментально. Если ток холостого хода будет больше 1-2 А, то необходимо домотать витки, если меньше - отмотать. Вторичная обмотка мотается проводом ПВ3 сечением 15-20 мм, 30 витков. Третья обмотка содержит так же 30 витков, но намотанных проводом МГТФ 0,35. Между обмотками прокладывается изоляция из тесьмы.

После испытания трансформатора можно можно приступить к изготовлению схемы управления. Она представляет собой фазовый регулятор тока. Переменное напряжение, снятое с третьей обмотки трансформатора выпрямляется мостом на диодах VD5-VD8 Положительной полуволной через резисторы R1 и R2 заряжается конденсатор С1. Когда напряжение на нём достигнет примерно шести вольт происходит пробой аналога низковольтного динистора, собранного на стабилитроне VD6 и тиристоре VS3, и через диод VD3 происходит открывание тиристора VS1. Ёмкость С1 при этом разряжается. То же самое происходит при отрицательной полуволне, только открывается диод VD4 и тиристор VS2. Резистор R3 служит для ограничения тока через аналог динистора.
Налаживание заключается в подстройке резистором R1 необходимой зоны регулирования сварочного тока.

В качестве SA1 можно использовать любой автомат на 25 А КД209А можно заменил» на КД202В-КД202М или любые другие на ток более 0,7 А и напряжение более 70 В. Тиристор КУКЛА можно заменить на КУ201-КУ202. Резисторы R1 и R2 - на мощность не менее 10 Вт. С1 - К50-6. VD1, VD2, VS1, VS2 на ток 160-250 А с любой группой по напряжению. Их необходимо установить на радиаторы с площадью охлаждения не менее 100 см2.

Обмотка 3 трансформатора рассчитана на напряжение 40 В, а вторичную, при необходимости, можно увеличить.

Если у Вас возникла необходимость в блоке питания с нестандартным напряжением, а нужного не нашлось, то не расстраивайтесь – его можно изготовить самостоятельно! Если это не импульсный блок питания, то одним из важных элементов БП будет являться качественный трансформатор. Трансформатор под необходимые напряжения можно сделать своими руками, зачастую, при соблюдении всех правил намотки, самодельный трансформатор будет намного лучше, чем заводского изготовления.

Для намотки трансформатора существует упрощенные методы расчета, которые вполне хорошо себя зарекомендовали в радиолюбительской деятельности. Как намотать трансформатор с нуля по одному из таких методов мы поговорим в следующих статьях, а в этой затронем лишь пошаговую перемотку трансформатора с уже имеющейся первичной обмоткой. Так что перед прочтением объемной статьи заварите пару чашек кофе/чая и наберитесь терпения 🙂

Несколько важных моментов, которые необходимо знать, перед тем как приступить к перемотке трансформатора:

1) Перед измерением напряжений вторичных обмоток не лишним будет и измерить напряжение в сети 220В (запишите в блокнот, при каком напряжении производились измерения). Изменение значения питающей сети приводит к изменению напряжения на вторичных обмотках трансформатора.

Перепады напряжения сети происходят, в основном, от её загруженности потребителями в вашем доме в зависимости от времени суток. Подобная ситуация наблюдается при смене подстанций. Например, напряжение сети 220В у Вас дома, на даче или на работе может быть разным. Так же просадка напряжений на вторичных обмотках может быть из-за качественных показателей трансформатора.

Упомянуто это обстоятельство было по той причине, что мне пришлось при конструировании анодно-накального трансформатора учитывать данный факт и делать дополнительные отводы на вторичной обмотке (можно и на первичной, под определенное напряжение сети). Трансформатор предназначался для испытателя радиоламп и было важно обеспечить прибор определенными питающими напряжениями. При несоответствии величины требуемого напряжения подключались питающие провода на другие отводы вторичных обмоток трансформатора.

2) Все действия с включенным в сеть 220В трансформатором необходимо производить с подсоединенной лампочкой накаливания 60-80Вт в разрыв одного провода, между сетевой вилкой и трансформатором. Лампочка выступает в роли предохранителя. Если вдруг Вы неправильно скоммутировали обмотки и произойдёт короткое замыкание в обмотках, то лампочка загорится и предотвратит последствия ошибки, если все хорошо, то лампочка не будет светиться. После того, как удостоверились, что все в порядке, лампочку можно исключить.

3) Еще один нюанс касаемо трансформаторов заводского изготовления. Нередко, чтобы снизить затраты на производство в целях экономии медной проволоки, на заводе недоматывают первичную обмотку, вследствие чего трансформаторы работают с повышенной индукцией. В этих случаях магнитопровод трансформатора будет на гране насыщения: гудеть, сильно греться и иметь большой ток холостого хода. Так же выходные напряжения будут сильно просаживаться под нагрузкой. Ведь величина тока ХХ один из важных показателей качественного трансформатора. Чем меньше ток ХХ, тем лучше.

Чтобы замерить ток холостого хода в цепь первичной обмотки включают микроамперметр. Микроамперметр подсоединяют последовательно к одному проводу между сетевой вилкой и самим трансформатором, при этом нагрузка на вторичных обмотках должна быть отключена. В зависимости от габаритной мощности трансформатора определяют соответствие приемлемого тока ХХ для этого трансформатора.

4) При сборке трансформатора в обязательном порядке необходимо изолировать стягивающие шпильки диэлектриком (кембрик, бумажная трубочка) от пластин магнитопровода. Так же плотно без зазоров собрать пакет пластин магнитопровода.

Плохо собранный трансформатор может свести на нет правильный расчет обмоток трансформатора, увеличив тем самым вихревые токи (токи Фуко), а они приведут к большому току холостого хода со всеми его «прелестями».

5) При перемотке трансформатора следует взять в расчет заполняемость окна магнитопровода медной проволокой. Может возникнуть ситуация, когда неправильно выбранный магнитопровод с маленьким окном не позволит намотать необходимое количество витков проволокой рассчитанного диаметра. Почти во всех советских брошюрах или пособиях для радиолюбетелей по намотке приводятся формулы по расчету заполняемости окна магнитопровода.

6) Количество намотанных витков проволоки в обмотке можно примерно узнать, не разбирая трансформатор. Для тороидальных трансформаторов все намного проще по подсчету витков на вольт. Достаточно намотать на «бублик» поверх всех обмоток несколько витков изолированного провода, включить трансформатор в сеть и замерить напряжение.

Для Ш-образных почти все так же, но при условии, что есть зазор между магнитопроводом и катушкой. Если есть возможность продеть провод и обмотать его вокруг катушки трансформатора, то в этом случае можно аккуратно просунуть гибкий изолированный длинный провод в зазор и сделать несколько витков (на сколько провода хватит). Укладку провода на катушке необходимо сделать плотно, ровными витками друг к другу. Концы только что сделанной обмотки расправить, чтобы они не закоротили. Остаётся только вставить сетевую вилку в розетку и замерить напряжение мультиметром.

Напряжение будет соответствовать количеству сделанных проводом витков. Дальше вступают простые законы математики по вычислению количества витков на один вольт. Считаете, сколько намотано витков, и измеряете напряжение, далее вычисляете, сколько необходимо витков для одного вольта. Затем перемножаете полученное количество витков (на один вольт) на требуемое напряжение в обмотке — все просто!

Как определить первичную обмотку?

Если Вы не знаете, как подключить трансформатор, то первым делом необходимо найти первичную обмотку. Первичную обмотку в понижающем трансформаторе можно определить с помощью мультиметра в режиме измерения сопротивления. В большинстве случаев сетевая обмотка имеет самое высокое сопротивление, так как намотана на большое количество витков.

Обратите внимание, что первичная обмотка в маломощных трансформаторах наматывается тонким обмоточным проводом и располагается (как правило, но бывают исключения) ближе всех к стержню магнитопровода. Рассмотрите контактные лепестки на каркасе катушки трансформатора, концы обмоток выходят наружу и запаиваются на лепестки контактов. Так можно визуально оценить толщину проволоки и какие выводы обмоток находятся ближе всех к внутренней стороне каркаса катушки.



Так же с большим сопротивлением может быть и высоковольтная анодная обмотка в повышающем анодно-накальном трансформаторе, но в любом случае необходимо проверять через лампочку и замерять напряжение на других обмотках. Например, на накальную обмотку подать напряжение 6,3В и замерить напряжение на других обмотках. Сетевая (первичная) обмотка намотана на 220-230В, на ней должно быть примерно такое же напряжение.

Определить обмотки можно с помощью мультиметра в режиме «прозвонка» (так же измерение сопротивления). На контактной площадке катушки трансформатора ставите щуп на один лепесток и поочередно вторым щупом дотрагиваетесь до других лепестков. Когда находите второй конец обмотки, то мультиметр звуковым сигналом (показаниями сопротивления на экране) оповещает Вас об этом. Таким образом «вызваниваете» обмотки. Чтобы не запутаться следует предварительно срисовать расположение контактов на катушки и помечать в процессе определения обмоток на замыкание. Если обмотка имеет несколько выводов, то начало и её конец можно узнать по наибольшему сопротивлению для данной обмотки (средняя точка будет иметь среднее значение сопротивления).

Выполнив несложные действия с определением обмоток, Вы самостоятельно сможете подключить неизвестный Вам трансформатор. С этим намного проще, если на катушках трансформатора указана заводская маркировка. В этом случае по информации из справочника можно определить параметры и нумерацию выводов обмоток трансформатора.

Перемотка трансформатора своими руками. Практический пример

Теперь, уяснив некоторые моменты, о которых нужно знать, приступаем к перемотке трансформатора. Далее будет описан пример перемотки в «живом формате рассказа», если бы я под диктофон записывал в хронологическом порядке все свои действия для Вас:). Итак, кнопка «Запись» включена, пленка кассеты с характерным шуршанием наматывает пленку с одной катушки на другую. Вечер, на столе горит настольная лампа, а в воздухе витает запах канифоли … 🙂

Друг попросил собрать двуполярный источник питания для питания синтезатора «Юность-21». Необходимо было получить на выходе стабильные +/- 10 вольт. В своих радиолюбительских запасах специфического трансформатора не нашлось. Решено было самостоятельно изготовить под необходимые параметры. За основу переделки был взят трансформатор броневого типа с Ш-образным магнитопроводом, ранее работавший в блоке питания одноканального усилителя. По предварительным подсчетам общая нагрузка на трансформатор в усилителе составляла 3А, что соответствовало с запасом для нагрузки проектируемого блока питания.

Взяв во внимание габаритную мощность трансформатора и толщину проволоки вторичной обмотки, прикинул, что первичная обмотка должна быть намотана проволокой подходящего диаметра (замеры микрометром после смотки вторичной обмотки это подтвердило). Измерение тока холостого хода так же подтвердило пригодность выбранного трансформатора (не нужно было доматывать первичку). Оставалось лишь разобраться с вторичной обмоткой.

Для двуполярного блока питания необходимо иметь две симметричные обмотки рассчитанные на 1 Ампер нагрузки (на трансформаторе под переделку они уже имеется). Подключаем трансформатор в сеть 220В и замеряем напряжения на отводах обмоток. Полученные значения записываем на черновик для последующих расчетов. Далее разбираем трансформатор для его перемотки.

Откручиваем шпильки и убираем кронштейны трансформатора. Перед нами Ш-образный магнитопровод броневого типа. Он состоит из Ш-образных пластин и I-образных пластинок, которые между собой чередуются и перекладываются определенным образом.

Для облегчения процесса разбора аккуратно счищаем лак/краску. Удаление лакокрасочного покрытия (если это необходимо) производят крайне осторожно, чтобы не повредить поверхность пластин и не оставить заусенец, которые могут замкнуть между собой пластины магнитопровода. По возможности обходимся без этих манипуляций.

Вначале необходимо удалить I-образные пластинки. Аккуратно подцепляем ножом или плоской тонкой отверткой подцепляем и вытягиваем их все. После этого поочередно вынимаем из каркаса катушки трансформатора Ш-образные пластинки.


После того, как катушку трансформатора отделили от магнитопровода, приступаем к дальнейшим действиям. Перед нами сейчас стоит задача подсчитать количество витков во вторичных обмотках. Первичную обмотку не трогаем.

Две вторичные обмотки по итогам измерения имеют одинаковые напряжения и симметричны друг другу (зеркально отображают количество витков). Узнаем количество витков одной обмотки – будем знать, сколько их у другой. После подсчета не придется сматывать полностью все витки, мы лишь подсчитаем, сколько необходимо смотать проволоки для того, чтобы получить нужное напряжение.

Такой подсчет витков нам поможет удостовериться в правильности предыдущих измерений, когда мы на катушку наматывали провод для подсчета, сколько приходится витков на один вольт

Усевшись за стол в спокойной обстановке перед собой располагаем листок бумаги, ручку (карандаш) и катушку трансформатора. Начинаем разматывать проволоку и считаем сматываемые витки. После каждых десяти сматываемых витков на листке бумаге помечаем отметкой, например, вертикальную черточку, что будет соответствовать 10-ти виткам. Так же будем поступать при намотке проволоки на катушку. Это нужно для того, чтобы не запутаться и не сбиться со счета. Так же можно использовать простой калькулятор, приплюсовывая значения витков.

Несколько советов:

Перед работой проследите, чтобы вокруг Вас не было острых поверхностей предметов мебели, по которым может тереться или зацепиться сматываемая проволока (не повредите эмалевую изоляцию обмоточных проводов!);

Сматывайте проволоку на отдельную катушку. Так она будет уложена ровно без повреждений, что позволит использовать её повторно;

Так же важно аккуратно сматывать проволоку, чтобы избежать в процессе образовывающихся петель и заломов – так мы сохраним проволоку относительно ровной и не повредим эмалевое покрытие медной проволоки при её выгибании.

Методика перемотки вторичных обмоток трансформатора

У нас первая вторичная обмотка по измерениям 2,02 вольта. Сматываем проволоку и подсчитываем витки. 2,02 вольта соответствует 12 виткам. 12 витков делим на 2,02 вольта и получаем 5,94 витка на один вольт. Далее, при расчетах, напряжение, которое должны получить, мы будем умножать на 5,94 витка. Полученное значение будет равное тому, сколько нам нужно будет намотать витков, чтобы получить требуемое напряжение.

Продолжим сматывать вторую вторичную обмотку. По измерениям она соответствовала напряжению 19,08 вольт. Проверим предыдущие расчеты на практике. Вторая вторичная обмотка получилась 112 витков. 112 делим на 5,94 и получаем 18,85 вольт.

Предполагаю, что небольшое расхождение появилось за счет того, что не учитывались значения второго знака после запятой и длина проволоки для отвода второго конца вторичной обмотки. Отрезок проволоки для отвода вторичной обмотки шел под прямым углом от нижней щечки каркаса катушки к верхней. На данный отрезок так же наводиться ЭДС (примерно ¼ витка), что и отразилось на расхождении. Возможно, на один виток ошибся и не посчитал его. Данную погрешность стоит так же учитывать при проектировании трансформатора.

Сматываем третью вторичную обмотку. Стоит обратить внимание, что при измерениях третья обмотка по показаниям вольтметра имела то же значение напряжения, что и вторая вторичная обмотка. Значит, четвертая вторичная обмотка у нас соответствует напряжению первой обмотки и имеет такое же количество витков.

На выходе проектируемого двуполярного блока питания необходимо напряжение плюс/минус 10 вольт постоянного напряжения. Чтобы на выходе блока питания было 10 вольт, нужно учесть некоторые моменты, а именно падение напряжения на элементах блока питания и «просадки» в сети питания 220В. По приблизительным прикидкам трансформатор для питания схемы блока питания должен выдавать 13-14 вольт переменного напряжения. Исходя из этого, мотаем две вторичные обмотки на 14 вольт.

Третью вторичную обмотку мы пока не трогали. Третья и четвертая обмотка в сумме дает нам 21,1 вольт, а это 124 витка для двух обмоток. 14 вольт умножаем на 5,94 витка и получаем значение 83,16 – это необходимое количество витков намотки для достижения 14 вольт. От 124 витков (21,1В) отнимаем 83,16 витка (14В) и получаем 40,84 – это значение количества витков, которое следует отмотать, чтобы получить в итоге обмотку, на выходе которой будет 14 вольт. Отматываем и получаем первую необходимую вторичную обмотку.

Чтобы повысить надежность трансформатора и исключить электрический пробой лаковой изоляции проволоки, необходимо плотно обвернуть изолятором катушку поверх первой вторичной обмотки. В качестве изолятора можно взять бумагу, которой обворачивают обмотки трансформатора заводского исполнения как ТС-180 либо иных, если такой не имеется, то можно поискать у себя на кухне бумагу для запекания. Отрезаем полосу бумаги на ширину катушки трансформатора с небольшим запасом и по краям делаем надрезы «гармошкой» размером 3-4 миллиметра. Укладываем бумагу и обворачиваем ею катушку в несколько слоев (не больше 2-3).


Поверх бумажной изоляции наматываем 83,16 витка для второй вторичной обмотки на 14 вольт. Намотку делаем ровно виток к витку, стараемся повторить заводскую укладку на катушке. По окончанию намотки катушку обворачиваем изоляционной бумагой на подобие как мы делали межслойную изоляцию между обмотками.



Теперь собираем трансформатор в обратной последовательности как мы его разбирали. Не забываем изолировать стягивающие шпильки от пластин магнитопровода (после сборки можно прозвонить тестером). При стягивании пакета пластин главное соблюсти баланс, не пережать (может быть повреждена резьба или лопнет шпилька) и недотянуть гайки по резьбе. Недостаточное стягивание пластин магнитопровода может привести к гулу трансформатора и повышенному току холостого хода.

Теперь через лампочку включаем трансформатор в сеть и измеряем напряжение на концах обмоток. Возможно, придется повторить процедуру сбора-разбора трансформатора несколько раз для достижения желаемого результата.


Благодарю Вас, что осилили прочтение объемной статьи! В интернете много примеров перемотки трансформаторов, в этой статье был описан собственный опыт по перемотке трансформатора своими руками, так же не стоит воспринимать статью как научный труд.

Так же советую найти брошюры в электронном виде советского периода, где все толково и грамотно изложено по данной теме.

В следующих статьях постараюсь подробно описать расчет и намотку трансформатора с нуля, расскажу, . Успехов!

Об Авторе:

Приветствую вас, дорогие читатели! Меня зовут Максим. Я убежден, что почти все можно сделать у себя дома своими руками, уверен, что это под силу каждому! В свободное время люблю мастерить и создавать что-то новое для себя и своих близких. Об этом и многом другом вы узнаете в моих статьях!

Для преобразования тока используются различные вид специальных устройств. Тороидальный трансформатор ТПП для сварочного аппарата и других приборов, можно намотать своими руками в домашних условиях, он является идеальным преобразователем энергии.

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.


Фото — принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.


Фото — тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора :

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.


Фото — готовый ТПН25

Видео: назначение тороидальных трансформаторов

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.


Фото — Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Как сделать

Изготовление тороидального трансформатора под силу даже молодым электрикам. Намотка и расчет не представляют собой ничего сложного. Предлагаем рассмотреть, как правильно мотать тороидальный магнитопровод для полуавтомата:


Учитывая, что 1 виток переносит 0,84 Вольт, схема намотки тороидального трансформатора выполняется по такому принципу:

Так можно с легкостью самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Описанную схему можно подключить как к дуговой сварке, так и к полуавтоматической. Параметры рассчитываются исходя из сечения провода, количества витков, размера кольца. Характеристики этого устройства позволяют производить ступенчатую регулировку. Среди достоинств принципа сборки: простота и доступность. Среди недостатков: большой вес.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.