Металлы нахождение в периодической системе элементов менделеева. Л.п.иванова, учитель химии новинской средней школы (астраханская обл.)

Цели урока:

  • повторить с учащимися положение металлов в ПСХЭ, особенности строения их атомов и кристаллов (металлическую химическую связь и кристаллическую металлическую решетку).
  • обобщить и расширить сведения учащихся о физических свойствах металлов и их классификаций.

Оборудование и реактивы: Коллекции образцов металлов; образцы монет и медалей. Образцы сплавов. Периодическая система химических элементов Д.И. Менделеева.

Ход урока

В начале урока акцентируем внимание учащихся на значимости новой темы, определяемой той ролью, которую металлы играют в природе и во всех сферах деятельности человека.

Человек использовал металлы с древних времен.

I. В начале был век медный .

К концу каменного века человек открыл возможность использования металлов для изготовления орудий труда. Первым таким металлом был медь.

Период распространения медных орудий называют энеолитом или халколитом, что в переводе с греческого означает «медь». Медь обрабатывалась с помощью каменных орудий методом холодной ковки. Самородки меди превращались в изделия под тяжелыми ударами молота. В начале медного века из меди детали лишь мягкие орудия, украшения, предметы домашней утвари. Именно с открытием меди и других металлов стала зарождаться профессия кузнеца.

Позже появились листья, а потом человек стал добавлять к меди олово или сурьму, делать бронзу, более долговечную, прочную, легкоплавкую.

Бронза – сплав меди и олова. Хронологические границы бронзового века датируются в начале 3-го тысячелетия до н.э. до начала 1-го тысячелетия до н.э.

Третий и последний период первобытной эпохи характеризуется распространением железной металлургии и железных орудий и знаменует собой железный век. В современном значении этот термин был введен в употребление в середине IХ века датским археологом К. Ю. Томсоном и вскоре распространился в литературе наряду с терминами «каменный век» и « бронзовый век».

В отличие от других металлов железо, кроме метеоритного почти не встречается в чистом виде. Ученые предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения, и не зря железо именуется « небесным камнем». Самый крупный метеорит нашли в Африке, он весил около шестидесяти тонн. А во льдах Гренландии нашли железный метеорит весом тридцать три тонны. Современные химические

И настоящее время продолжается железный век. Ведь в настоящее время железные сплавы составляют почти 90 % всего металлов и металлических сплавов.

Затем учитель подчеркивает что исключительное значение метолов для развития общество обусловлено, конечно, их уникальными свойствами и просит учащихся назвать эти свойств.

Учащиеся называют также свойства металлов как электропроводность и теплопроводность, характерный металлический блеск, пластичность, твердость (кроме ртути) и др.

Учитель задает учащимся ключевой вопрос: а чем же обусловлены эти свойства?

I. Химические элементы – металлы.

  1. Особенности электронного строения атомов.
  2. Положение металлов в ПСХЭ в связи со строением атомов.
  3. Закономерности в изменении свойств элементов – металлов.
II. Простые вещества – металлы.
  1. Металлическая связь и металлическая кристаллическая решетка.
  2. Физические свойства металлов.
I. Химические элементы – металлы.

1. Металлы – это химические элементы атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя. большим радиусом атомов, вследствие что эти электроны слабо удерживаются с ядром.

2. Положение металлов в ПСХЭ в связи со строением атомов.

Учитель предлагает учащимся охарактеризовать положение элементов с рассмотренным строением атомов в ПСХЭ.

Учащиеся отвечают, что это будут элементы, размещенные в левом нижнем углу ПСХЭ.

Учитель подчеркивает, что в ПСХЭ будут все элементы. Расположенные ниже диагонали В - Аt, даже те у которых на внешнем слое 4 электрона (Jе, Sn, Рb), 5 электронов (Sd, Вi), 6 электронов (Ро), так как они отличаются большим радиусом.

В ходе беседы выясняется, что среди них есть S и р-элементы-металлы главных подгрупп, а также d и f металлы образующие побочные подгруппы.

Легко увидеть, что большинство элементов ПСХЭ – металлы.

3. Закономерности в изменении свойств элементов – металлов.

Учащиеся отвечают, что прочность связи валентных электронов с ядром зависит от двух факторов: величины заряда ядра и радиуса атома .

Показывают, что в периодах с увеличением заряда ядра восстановительные свойства уменьшаются, а в группах, наоборот, с возрастанием радиуса атома восстановительные свойства возрастают.

У элементов – металлов побочных подгрупп свойства чуть – чуть другие.

Учитель предлагает сравнить активность элементов – металлов падает. Эта закономерность наблюдается и у элементов второй побочной подгруппы Zn, Сd , Нg. Напоминаем схему электронного строения атомов.

1 2 3 4 5 6 7 номер электронного слоя.

У элементов побочных подгрупп – это элементы 4-7 периодов – с увеличением порядкового элемента радиус атомов изменяется мало, а величина зарядка ядра увеличивается значительно, поэтому прочность связи валентных электронов с ядром усиливается, восстановительные свойства ослабевают.

II. Простые вещества – металлы.

Учитель предлагает рассмотреть простые вещества – металлы.

Сначала обобщим сведения о типе химической связи, образуемой атомами металлов и строение кристаллической решетки (Приложение 1)

  • сравнительно небольшое количество электронов одновременно связывают множество ядер, связь делаколизована;
  • валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален;
  • металлическая связь не обладает направляемостью и насыщенностью.

Учащиеся делают вывод, что в соответствие именно с таким строением металлы характеризуются общими физическими свойствами (демонстрация таблицы 5 «Классификация металлов по физическим свойствам»)

Сравнивая металлы по температурам правления можно демонстрировать плавление натрия и его блеск. (Приложение 2)

Учитель подчеркивает, что физические свойства металлов определяются именно их строением.

а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло. (демонстрация)

б) плотность . Металлы делятся на мягкие (5г/см) и тяжелые (меньше 5г/см). (демонстрация)

в) плавкость . Металлы делятся на легкоплавкие и тугоплавкие. (демонстрация)

г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.

Следует отметить, что у некоторых неметаллов, при повышении температуры электропроводность возрастает, например, у графита, при этом с повышением температуры разрушаются некоторые ковалентные связи, и число свободно перемещающихся электронов возрастает.

д) металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло.Q

Поэтому все металлы в кристаллическом состоянии имеют металлический блеск. Для большинства металлов в ровной степени рассеиваются все лучи видимой части спектра, поэтому они имеют серебристо – белый цвет. Только золото и медь в большой степени поглощают короткие волны и отражают длинные волны светового спектра, поэтому имеют желтый свет. Самые блестящие металлы – ртуть, серебро, палладий. В порошке все металлы, кроме АI и Мg, теряют блеск и имеют черный или темно – серый цвет.

Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

Учитель: мы рассмотрели строение и физические свойства металлов, их положение в периодической системе химических элементов Д.И. Менделеева. Теперь для закрепления предлагаем тест.

1) Электронная формула кальция.

а) 1S 2 2S 2 2Р 6 3S 1

б) 1S 2 2S 2 2Р 6 3S 2

в) 1S 2 2S 2 2Р 6 3S 2 3S 6 4S 1

2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3S 2 3Р 6 4S 2 имеет атом:

3) Электронная формула наиболее активного металла:

б) 1S 2 2S 2 2Р 6 3S 2

в) 1S 2 2S 2 2Р 6 3S 2 3Р 6 3d 10 4S 2

г) 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2

4) Металлы при взаимодействии с неметаллами проявляют свойства

а) окислительные;

б) восстановительные;

в) и окислительные, и восстановительные;

г) не участвуют в окислительно-восстановительных реакциях;

5) В периодической системе типичные металлы расположены в:

а) верхней части;

б) нижней части;

в) правом верхнем углу;

г) левом нижнем углу;

Последний этап урока - подведение итогов. Каждому ученику выставляется оценка.

Домашнее задание: «Строение и физические свойства металлов».

Выучить материал по учебнику.

В периодической системе более 3/4 мест занимают : они находятся в I, II, III группах, в побочных подгруппах всех групп. Кроме того, металлами являются наиболее тяжелые элементы IV, V, VI и VII групп. Надо отметить, однако, что многие обладают амфотер-ными свойствами и иногда могут вести себя как неметаллы.
Особенностью строения атомов металлов является небольшое количество электронов на внешнем электронном слое, не превышающее трех.
Атомы металлов имеют, как правило, большие атомные радиусы. В периодах наибольшие атомные радиусы у щелочных металлов. Отсюда их наиболее высокая химическая активность, т. е. атомы металлов легко отдают электроны, - являются хорошими восстановителями. Лучшие восстановители - I и II групп главных подгрупп.
В соединениях металлы проявляют всегда положительную степень окисления, обычно от +1 до +4.

Рис 70. Схема образования металлической связи в куске металла,

В соединениях с неметаллами типичные металлы образуют химическую связь ионного характера. В виде простого атомы металлов связаны между собой так называемой металлической связью.

Запишите в тетрадь этот термин.

Металлическая связь - особый вид связи, присущий исключительно металлам. Сущность ее в том, что от атомов металлов постоянно отрываются электроны, которые перемещаются по всей массе куска металла (рис. 70). Атомы металла, лишенные электронов, превращаются в положительные ионы, которые стремятся снова притянуть к себе свободно движущиеся электроны. Одновременно другие атомы металла отдают электроны. Таким образом, внутри куска металла постоянно циркулирует так называемый электронный газ, который прочно связывает между собой все атомы металла. Электроны оказываются как бы обобществленными одновременно всеми атомами металла. Такой особый тип химической связи между атомами металлов обусловливает как физические, так и химические свойства металлов.

■ 1.Чем объяснить малую электроотрицательность металлов?
2. Как возникает металлическая связь?
3. В чем отличие металлической связи от ковалентной?

Рис. 71. Сравнение температур плавления разных металлов

Металлы обладают рядом сходных физических свойств, отличающих их от неметаллов. Чем больше валентных электронов имеет металл, тем прочнее металлическая связь, тем прочнее кристаллическая решетка, тем прочнее и тверже металл, тем выше его температура плавления и кипения и т. д. Ниже рассматриваются особенности физических свойств металлов.
Все они обладают более или менее ярко выраженным блеском, который принято называть металлическим. Металлический блеск характерен для куска металла в целом. В порошке металлы темного цвета, за исключением магния и алюминия, которые сохраняют серебристо-белый цвет, в связи с чем алюминиевая пыль используется для изготовления краски «под серебро». Многие неметаллы обладают жирным или стеклянным блеском.
Цвет металлов довольно однообразен: он либо серебристо-белый ( , ), либо серебристо-серый ( , ). Только желтого цвета, а - красного. Неметаллы имеют весьма разнообразную окраску: - лимонно-желтая, - красно-бурый, - красный или белый, - черный.

Таким образом, по цвету металлы условно делят на черные и цветные. К черным металлам относятся и его . Все остальные металлы называются цветными.

При обычных условиях металлы представляют собой твердые с кристаллической структурой. Среди неметаллов встречаются как твердые ( , ), так и жидкие () и газообразные ( , ) .
Все металлы, за исключением ртути, - твердые вещества, поэтому температура плавления их выше нуля, только температура плавления ртути -39°. Наиболее тугоплавким металлом является , температура плавления которого 3370°. Температура плавления остальных металлов лежит в этих пределах (рис. 71).
Температуры плавления неметаллов значительно ниже, чем металлов, например кислорода -219°, водорода -259,4°, фтора -218°, хлора -101°, брома -5,7°.

Рис. 72. Сравнение твердости металлов с твёрдостью алмаза.

Металлы обладают различной твердостью, которую сопоставляют с твердостью алмаза. Показатель твердости металла определяют специальным прибором - твердомером. При этом в массу металла вдавливают стальной шарик или, в случае большей твердости металла, алмазный конус. По силе давления и глубине образовавшейся лунки определяют твердость металла.
Наиболее твердым металлом является . Мягкие металлы - , - легко режутся ножом. Твердость отдельных металлов по общепринятой десятибалльной шкале,твердости представлена на рис. 72.

Металлы в большей или меньшей степени обладают пластичностью (ковкостью). У неметаллов это свойство отсутствует. Наиболее ковким металлом является . Из него можно выковать золотую фольгу толщиной 0,0001 мм - в 500 раз тоньше человеческого волоса. В же время весьма хрупка; ее можно даже растереть в ступке в порошок.
Пластичностью называют способность к сильной деформации без нарушения механической прочности. Пластичность металлов используется при их прокатке, когда огромные раскаленные металлические болванки пропускают между обжимными валами, приготовляя из них листы, при волочении, когда из них вытягивают проволоку, при прессовании, штамповке, когда под действием

Рис. 73. Сравнение металлов по плотности.

давления нагретому металлу придают определенную форму, которую он сохраняет при охлаждении. Пластичность зависит от структуры кристаллической решетки металлов.
Все металлы нерастворимы в воде, но зато растворимы друг в друге в расплавах. Твердый раствор одного металла в другом называется сплавом.

По плотности металлы разделяются на тяжелые и легкие. Тяжелыми считают те, плотность которых больше 3 г/см3 (рис. 73). Самым тяжелым металлом является . Наиболее легкие металлы - , .- имеют плотность даже меньше единицы. Большое применение в промышленности получили легкие металлы - и .
Металлы характеризуются высокой электро- и теплопроводностью (рис. 74), тогда как неметаллы обладают этими свойствами в слабой степени. Наибольшей электро-и теплопроводностью обладает , на втором месте стоит . Довольно высоки эти свойства у алюминия.

Рис. 74. Сравнение электропроводности и теплопроводности разных металлов

Следует отметить, что металлы с высокой электропроводностью имеют и высокую теплопроводность.
Металлы проявляют магнитные свойства. Если при соприкосновении с магнитом металл притягивается к нему и после этого сам становится магнитом, мы говорим, что металл намагничивается. Хорошо намагничиваются , и их . Такие металлы и называют ферромагнитными. Неметаллы магнитными свойствами не обладают.

■ 4. Составьте и заполните следующую таблицу:

Химические свойства металлов. Коррозия

Химические и физические свойства металлов определяются атомной структурой и особенностями металлической связи. Все металлы отличаются способностью легко отдавать валентные электроны. В связи с этим они проявляют ярко выраженные восстановительные свойства. Степень восстановительной активности металлов отражает электрохимический ряд напряжений (см. приложение III, п. 6).
Зная положение металла в этом ряду, можно сделать вывод о сравнительной величине энергии, затрачиваемой на отрыв от атома валентных электронов. Чем ближе к началу ряда, тем легче окисляется металл. Наиболее активные металлы вытесняют из воды при обычных условиях с образованием щелочи:
2Na + 2Н2О = 2NaOH + H2
Менее активные металлы вытесняют из воды в виде перегретого пара и образуют
2Fe + 4Н2О = Fe3О4 + 4H2
реагируют с разбавленными и бескислородными кислотами, вытесняя из них водород:
Zn + 2НСl = ZnCl2 + H2
Металлы, стоящие после водорода, не могут вытеснять его из воды и из кислот, а вступают с кислотами в окислительно-восстановительные реакции без вытеснения водорода:
Сu + 2H2SO4 = CuSO4 + SO2 + Н2O
Все предшествующие металлы вытесняют последующие из их солей:
Fe + CuSO4 = FeSO4 + Сu

Fe0 + Сu2+ = Fe2+ + Сu0
Во всех случаях вступающие в реакции металлы окисляются. Окисление металлов наблюдается и при непосредственном взаимодействии металлов с неметаллами:
2Na + S = Na2S
2Fe + 3Сl2 = 2FeCl3
Большинство металлов активно реагируют с кислородом, образуя разного состава (см. стр. 38).

■ 5. Как можно охарактеризовать восстановительную активность металла, пользуясь рядом напряжений?

6. Приведите примеры металлов, реагирующих с водой по типу натрия, железа. Подтвердите свой ответ уравнениями реакций.

7. Сравните взаимодействие с водой активных металлов и активных неметаллов.
8. Перечислите химические свойства металлов, подтверждая свой ответ уравнениями реакций.
9. С какими из перечисленных ниже веществ будет реагировать железо: а) , б) гашеная известь, в) карбонат меди, г) , д) сульфат цинка, е) ?
10. Какой газ и в каком объеме может быть получен при действии на 5 кг смеси меди и окиси меди концентрированной азотной кислотой, если окиси меди в смеси 20%?

Окисление металлов часто приводит к их разрушению. Разрушение металлов под действием окружающей среды называется коррозией.

Запишите в тетрадь определение коррозии.

Происходит под влиянием кислорода, влаги и углекислоты, а также окислов азота и пр. Коррозия, вызванная непосредственным взаимодействием металла с веществом окружающей его среды, называется химической, или газовой, коррозией. Например, на химических производствах металл иногда контактирует с кислородом, хлором, окислами азота и т. д., в результате чего образуются соли и металла:
2Сu + О2 = 2СuО
Кроме газовой, или химической, коррозии, существует еще электрохимическая коррозия, которая встречается гораздо чаще. Для того чтобы понять схему электрохимической коррозии, рассмотрим гальваническую пару - .

Возьмем цинковую и медную пластинки (рис. 75) и опустим их в раствор серной кислоты, которая, как нам известно, содержится в растворе в виде ионов:
H2SO4 = 2Н+ + SO 2 4 —
Соединив цинковую и медную пластинки через гальванометр, мы обнаружим наличие в цепи электрического тока. Это объясняется тем, что атомы цинка, отдавая электроны, в виде ионов переходят в раствор:
Zn 0 - 2е — → Zn +2
Электроны через проводник переходят на медь, а с меди - на ионы водорода:
Н + + е — → Н 0

Водород в виде нейтральных атомов выделяется на медной пластинке, а постепенно растворяется. Таким образом, медь, как бы оттягивая электроны с цинка, заставляет последний быстрее растворяться, т. е. способствует окислению. В же время совершенно чистый может некоторое время находиться в кислоте, совершенно не подвергаясь ее действию.

Рис. 75. Схема образова­ния гальванической пары при электрохимической коррозии. 1 - цинк; 2 - медь; 3 - пузырь­ки водорода на медном элек­троде; 4 - гальванометр

По такой же схеме происходит коррозия такого металла, как железо, только электролитом на воздухе является , а примеси к железу играют роль второго электрода гальванической пары. Эти пары микроскопические, поэтому разрушение металла идет гораздо медленнее. Разрушению обычно подвергается более активный металл. Таким образом, электрохимическая коррозия - это окисление металла, сопровождающееся возникновением гальванических пар. причиняет большой ущерб народному хозяйству.

12. Дайте определение коррозии.
11. Можно ли считать коррозией то, что на воздухе быстро окисляется, взаимодействие цинка с соляной кислотой, взаимодействие алюминия с окисью железа при термитной сварке, получение водорода при взаимодействии железа с перегретым водяным паром.

13. Какая разница между химической и электрохимической коррозией?
Для борьбы с коррозией существует много способов. Металлы (в частности, железо) покрывают масляной краской, образующей на поверхности металла плотную пленку, не пропускающую и пары воды. Можно покрывать металлы, например медную проволоку, лаком, который одновременно защищает металл от коррозии и служит изолятором.

Воронение - это процесс, при котором железо подвергают действию сильных окислителей, в результате чего металл покрывается не проницаемой для газов пленкой окислов, предохраняющей его от воздействия внешней среды. Чаще всего это бывает магнитная окись Fe304, которая глубоко внедряется в слой металла и защищает его от окисления лучше всякой краски. Уральское кровельное железо, подвергнутое воронению, продержалось на кровле без ржавления более 100 лет. Чем лучше отполирован металл, тем плотнее и прочнее образованная на его поверхности пленка окислов.

Эмалирование - очень хороший вид защиты от коррозии различной посуды. Эмаль не поддается не только действию кислорода и воды, но даже сильных кислот и щелочей. К сожалению, эмаль весьма хрупка и при ударе и быстрой смене температур довольно легко трескается.
Очень интересными способами защиты металлов от коррозии являются , а также никелирование и лужение.
- это покрытие металла слоем цинка (так защищают главным образом железо). При таком покрытии в случае нарушения поверхностной пленки цинка коррозии подвергается сначала цинк как более активный металл, но цинк хорошо сопротивляется коррозии, так как его поверхность покрыта не проницаемой для воды и кислорода защитной пленкой окиси.
При никелировании (покрытии никелем) и лужении (покрытии оловом) ржавление железа не происходит до тех пор, пока не нарушен слой покрывающего его металла. Как только он нарушается, начинается коррозия железа как наиболее активного металла. Но - металл, сравнительно мало подвергающийся коррозии, поэтому его пленка держится на поверхности очень долго. Лудят чаще всего медные предметы, и тогда гальваническая пара медь - всегда приводит к коррозии олова, а не меди, которая менее активна как металл. При лужении железа получают «белую жесть» для консервной промышленности.

Для защита oт коррозии можно воздействовать не только на металл, но и на среду, которая его окружает. Если к соляной кислоте примешать некоторое количество хромата натрия, то реакция соляной кислоты с железом настолько замедлится, что практически кислоту можно перевозить в железных цистернах, тогда, как обычно это невозможно. Вещества, замедляющие коррозию, а иногда и практически полностью останавливающие ее, называются ингибиторами - замедлителями (от латинского слова inhibere - тормозить).

Характер действия ингибиторов различен. Они либо создают на поверхности металлов защитную пленку, либо уменьшают агрессивность среды. К первому типу относятся, например, NaNО2, замедляющий коррозию стали в воде и растворах солей, замедляющие коррозию алюминия в серной кислоте, ко второму - органическое соединение CO(NH2)2 - мочевина, которая очень замедляет растворение в азотной кислоте меди и других металлов. Ингибиторными свойствами обладают животные белки, некоторые высушенные растения - чистотел, лютик и т. д.
Иногда, чтобы усилить устойчивость металла к коррозии, а также придать ему некоторые более ценные свойства, из него изготовляют сплавы с другими металлами.

■ 14. Запишите в тетрадь перечисленные способы защиты металла от коррозии.
15. Чем определяется выбор способа защиты металла от коррозии?
16. Что такое ингибитор? Чем ингибитор отличается от катализатора?

Способы выплавки металлов из руд

Металлы в природе могут встречаться в самородном состоянии. Это в основном , например . Его извлекают путем механической отмывки от окружающих пород. Однако подавляющее большинство металлов встречается в природе в виде соединений. Вместе с тем не всякий природный минерал годится для получения содержащегося в нем металла. Следовательно, не всякий минерал можно назвать металлической рудой.
Горная порода или минерал, содержащие тот или иной металл в количестве, которое делает экономически выгодным его промышленное получение, называются рудами данного металла.

Запишите определение руд.

Из руд металлы получаются различными способами.
1. Если руда представляет собой окисел, то ее восстанавливают каким-либо восстановителем - чаще всего углеродом или окисью углерода СО, реже - водородом, например:
FesO4 + 4СО = 3Fe + 4CO2
2. Если руда представляет собой сернистое соединение, то ее сначала обжигают:
2PbS + 3О2 = 2РbO + 2SO2
затем полученный окисел восстанавливают углем:
РbО + С = РbО + CO
Из хлоридов металлы выделяют электролизом из расплавов. Например, при плавлении поваренной соли NaCl происходит термическая диссоциация вещества.
NaCl ⇄ Na + + Cl —
При пропускании постоянного электрического тока через этот расплав идут следующие процессы:
а) на катоде:
Na + + е — → Na 0
б) на аноде
Сl — - е — → Сl 0
Этим способом можно получить металлы и из других солей.
4. Иногда металлы можно восстановить из окислов путем вытеснения при высокой температуре другим, более активным металлом. Этот способ получил особенно широкое распространение при восстановлении металлов алюминием и потому сначала был назван алюминотермией:
2Аl + Fe2O3 = Аl2O3 + 2Fe.
Подробнее алюминотермия будет рассмотрена ниже.
Во многих случаях руда может оказаться смешанной с большим количеством пустой породы, для удаления которой, т. е. для «обогащения» руды, существуют различные методы, в частности метод пенной флотации. Для этой цели применяются минеральные масла, обладающие свойством избирательной адсорбции. Это значит, что частицы руды они поглощают, а пустую породу нет. В огромные чаны с водой помещают измельченную вместе с пустой породой руду и минеральное масло. После этого воду сильно вспенивают воздухом. Масло окружает пузырьки воздуха, образуя на них пленку. Получается устойчивая пена. Частицы, руды адсорбируются и вместе с пузырьками воздуха поднимаются наверх. Пена вместе с рудой сливается, а пустая порода остается на дне чана. В дальнейшем руду легко освобождают от масла, которое снова используется для флотации.

■ 17. Что такое пенная ?
18. Какими свойствами должен обладать металл, чтобы находиться в природе в самородном состоянии?
19. Можно ли назвать рудой любой минерал или горную породу, содержащую в своем составе тот или иной металл?
20. Перечислите, какие виды металлических руд вам известны.
21. Цинк встречается в природе в виде минерала цинковой обманки, содержащей сульфид цинка. Предложите способ получения цинка из цинковой обманки.
22. Из 2 т магнитного железняка, содержащего 80% магнитной окиси железа Fe3O4 получено 1,008 т железа. Рассчитайте практический выход железа.
23. Какие металлы могут быть получены электролизом растворов солей?
24. Из железа, полученного при восстановлении 5 т магнитного железняка, содержащего 13% примесей, приготовили сплав, содержащий 4% углерода. Сколько сплава при этом удалось получить?
25. Какое количество цинка и серной кислоты можно получить из 242,5 т цинковой обманки ZnS, содержащей 20% пустой породы?

31

Обоснование периодической системы элементов Поскольку электроны в атоме располагаются на различных энергетических уровнях и образуют квантовые слои, логично предположить, что...

  • Вторая группа периодической системы
  • Положение металлов в периодической системе. Физические свойства

    В периодической системе Д. И. Менделеева из 110 элементов 87 являются металлами. Они находятся в I, II, III группах, в побочных подгруппах всех групп. Кроме того, металлами являют­ся наиболее тяжелые элементы IV, V, VI и VII групп. Однако многие металлы обладают амфотерными свойствами и иногда могут вести себя как неметаллы. Особенностью строения атомов металлов является небольшое число электронов во внешнем энер­гетическом уровне, не превышающее трех. Атомы металлов имеют, как правило, большие атомные радиусы. В периодах наи­большие атомные радиусы у щелочных металлов. Они наиболее химически активны, т.е. атомы металлов легко отдают электроны и являются хорошими восстановителями. Лучшие восстановите­ли - металлы I и II групп главных подгрупп. В соединениях металлы всегда проявляют положительную степень окисления, обычно от +1 до +4. В соединениях с неметаллами типичные металлы образуют химическую связь ионного характера. В виде простого вещества атомы металлов связаны между собой так на­зываемой металлической связью.

    Металлическая связь - особый вид связи, присущий исклю­чительно металлам. Сущность ее в том, что от атомов металла постоянно отрываются электроны, которые перемещаются по всей массе куска металла.

    Атомы металла, лишенные электронов, превращаются в по­ложительные ионы, которые снова притягивают к себе движу­щиеся электроны. Одновременно другие атомы металла отдают электроны. Таким образом, внутри куска металла постоянно цир­кулирует так называемый электронный газ, который прочно свя­зывает между собой все атомы металла. Электроны оказываются как бы обобществленными всеми атомами металла. Такой особый тип химической связи между атомами металлов обуславливает как физические, так и химические свойства металлов.

    Металлы обладают рядом сходных физических свойств, отли­чающих их от неметаллов. Чем больше валентных электронов имеет металл, тем прочнее кристаллическая решетка, тем проч­нее и тверже металл, тем выше его температура плавления и кипения и т.д.

    Все металлы обладают более или менее ярко выраженным блеском, который принято называть металлическим, и непро­зрачностью, что связано с взаимодействием свободных электро­нов с падающими на металл квантами света. Металлический блеск характерен для куска металла в целом. В порошке металлы темного цвета, за исключением серебристо-белых магния и алю­миния. Алюминиевая пыль используется для изготовления крас­ки «под серебро». Многие металлы обладают жирным или стек­лянным блеском.

    Цвет металлов довольно однообразен: он либо серебристо-белый (алюминий, серебро, никель), либо серебристо-серый (же­лезо, свинец). Только золото желтого цвета, а медь - красного. По технической классификации металлы делятся условно на чер­ные и цветные. К черным относятся железо и его сплавы. Все остальные металлы называются цветными.

    Все металлы, за исключением ртути, - твердые вещества с кристаллической структурой, поэтому температуры плавления их выше нуля, только температура плавления ртути - З9°C. Наи­более тугоплавким металлом является вольфрам (3380°С). Метал­лы, плавящиеся при температуре выше 1000°С, называют туго­плавкими, ниже - легкоплавкими.

    Металлы обладают различной твердостью. Самый твердый металл - хром (режет стекло), а самые мягкие - калий, рубидий, цезий. Они легко режутся ножом.

    Металлы более или менее пластичны (обладают ковкостью). Наиболее ковким металлом является золото. Из него можно вы­ковать фольгу толщиной 0,0001 мм - в 500 раз тоньше человечес­кого волоса. Однако не обладают пластичностью Mn и Bi - это хрупкие металлы.

    Пластичностью называют способность к сильной деформации без нарушения механической прочности. При воздействии, вызы­вающем смещение частиц тела с ионной или атомной решеткой, происходит разрыв направленных связей, и тело разрушается. У металлов же связи образуются за счет электронного газа. Они не имеют направленности. Поэтому сохраняется целостность куска металла при изменении формы. Пластичность металлов исполь­зуется при их прокате.

    По плотности металлы разделяются на тяжелые и легкие. Тяжелыми считаются те, плотность которых больше 5 г/см. Самым тяжелым металлом является осмий (22,61 г/см). Наибо­лее легкие металлы - литий, натрий, калий (плотность меньше единицы). Плотность металла тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Широкое применение в промышленности получили легкие металлы - маг­ний и алюминий.

    Металлы характеризуются высокой электро- и теплопровод­ностью. Наиболее электро- и теплопроводно серебро, на втором месте стоит алюминий. Металлы с высокой электропроводностью имеют и высокую теплопроводность. Теплопроводность обуслав­ливается высокой подвижностью свободных электронов и колеба­тельным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе тела. Хорошая электропро­водность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разницы по­тенциалов приобретают направленное движение от отрицатель­ного полюса к положительному.

    Металлы проявляют магнитные свойства. Хорошо намагни­чиваются железо, кобальт, никель и их сплавы. Такие металлы и сплавы называются ферромагнитными.

    Классификации:

    Все неорганические соединения делятся на две большие группы:

      Простые вещества - состоят из атомов одного элемента;

      Сложные вещества - состоят из атомов двух или более элементов.

    Простые вещества

    • неметаллы

      амфотерные простые вещества

      благородные газы

    Сложные вещества по химическим свойствам делятся на:

      осно́вные оксиды

      кислотные оксиды

      амфотерные оксиды

      двойные оксиды

      несолеобразующие оксиды

      Гидроксиды;

      основания

    • амфотерные гидроксиды

      средние соли

      кислые соли

      осно́вные соли

      двойные и/или комплексные соли

    бинарные соединения:

      бескислородные кислоты

      бескислородные соли

      прочие бинарные соединения

    Неорганические вещества, содержащие углерод:

    Данные вещества традиционно относятся к области неорганической химии:

      Карбонаты

    • Оксиды углерода

      • Неорганические тиоцианаты (роданиды)

        Селеноцианаты

    • Карбонилы металлов

    Металлы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами , такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

    Характерные свойства металлов

      Металлический блеск

      Хорошая электропроводность

      Возможность лёгкой механической

      Высокая плотность

      Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)

      Большая теплопроводность

    В реакциях чаще всего являются восстановителями окислительно-восстановительных реакциях в водных растворах.

    Неметаллы - химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.

    Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

    Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

    Вопрос 25:

    Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов - последовательность, в которой металлы расположены в порядке увеличения ихстандартных электрохимических потенциалов, отвечающих полуреакции восстановления катиона металла

    Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H →Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

    Ряд напряжений характеризует сравнительную активность металлов в

    Соли взаимодействуют с металлами - более активные металлы, расположенные левее в электрохимическом ряду напряжений**, вытесняют из солей менее активные металлы. Например, железо вытесняет медь из раствора хлорида меди (II): Fe + CuCl 2 = FeCl 2 + Cu↓

    Вопрос 28: Металлы, их положение в периодической системе химических элементов д.И. Менделеева, строение их атомов, металлические связи. Общие химические свойства металлов.

    Положение металлов в периодической системе.

    Все химические элементы принято делить на металлы и неметаллы. Большинство элементов (более 85 из 109 известных) - это металлы.

    К металлам относятся s–элементы (элементы IA и IIA групп за исключением водорода и гелия); некоторые p–элементы (Al, Sn, Pb и другие); все d–элементы (элементы побочных подгрупп); все f–элементы (лантаноиды и актиноиды).

    Так как металлические свойства элементов с увеличением заряда ядра их атомов в периодах ослабевают, а в главных подгруппах усиливаются, то наиболее активные металлы сосредоточены в левом нижнем углу периодической системы элементов.

    Строение металлов .

    Отличительные особенности в строении атомов металлов - их большие по сравнению с неметаллами размеры (радиус) и небольшое число электронов на внешнем энергетическом уровне (как правило, 1-2 электрона, реже 3 или 4). Этим объясняется слабая связь внешних (валентных) электронов с ядром и способность атомов металлов легко отдавать эти электроны, превращаясь в положительно заряженные ионы.

    Этот процесс обратим, катионы металлов могут вновь притягивать к себе электроны (не только «свои», но и «чужие», то есть «потерянные» другими атомами). Иными словами, электроны свободно перемещаются в объеме металла, являются общими, «коллективными», называемыми также «электронным газом». Эти электроны и обеспечивают химическую связь металлов. В отличие от ковалентной связи (чаще всего образуемой парой электронов между двумя соседними атомами), металлическая связь делокализована (многоцентровая).

    Металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

    Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях. Металлическая связь имеет важное значение и обуславливает основные свойства металлов - электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al. - пластичность Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu. - металлический блеск Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, H

    Сильные восстановители: Me 0 – nē ® Me n+

    Главная > Документ

    Металлы в периодической системе. Строение атомов-металлов. Общая характеристика металлов.

    Положение металлов в периодической системе Если в таблице Д. И. Менделеева провести диагональ от бора к астату, то в главных подгруппах под диагональю окажутся атомы-металлы, а в побочных подгруппах все элементы ― металлы. Элементы, расположенные вблизи диагонали, обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых ― как неметаллы.Строение атомов металлов В периодах и главных подгруппах действуют закономерности в изменении металлических свойств.Атомы многих металлов имеют 1, 2 или 3 валентных электрона, например:

    Na (+ 11): 1S 2 2S 2 2p 6 3S 1

    Са (+ 20): 1S 2 2S 2 2p 6 3S 2 3p 6 3d 0 4S 2

    Щелочные металлы (1 группа, главная подгруппа): ...nS 1 .Щелочно-земельные (2 группа, главная подгруппа): ...nS 2 .Свойства атомов–металлов находятся в периодической зависимости от их местоположения в таблице Д. И. Менделеева. В ГЛАВНОЙ ПОДГРУППЕ :

      не изменяется .

      Радиус атома увеличивается

      Электроотрицательность уменьшается .

      Восстановительные свойства усиливаются .

      Металлические свойства усиливаются .

    В ПЕРИОДЕ:
      Заряды ядер атомов увеличиваются .

      Радиусы атомов уменьшаются .

      Число электронов на внешнем слое увеличивается .

      Электроотрицательность увеличивается .

      Восстановительные свойства уменьшаются .

      Металлические свойства ослабевают .

    Строение кристаллов металлов Большинство твердых веществ существует в кристаллической форме: их частицы расположены в строгом порядке, образуя регулярную пространственную структуру ― кристаллическую решетку.Кристалл ― твердое тело, частицы которого (атомы, молекулы, ионы) расположены в определенном, периодически повторяющемся порядке (в узлах). При мысленном соединении узлов линиями образуется пространственный каркас ― кристаллическая решетка.Кристаллические структуры металлов в виде шаровых упаковок

    а ― медь; б ― магний; в ― α-модификация железа

    Атомы металлов стремятся отдать свои внешние электроны. В куске металла, слитке или металлическом изделии атомы металла отдают внешние электроны и посылают их в этот кусок, слиток или изделие, превращаясь при этом в ионы. «Оторвавшиеся» электроны перемещаются от одного иона к другому, временно снова соединяются с ними в атомы, снова отрываются, и этот процесс происходит непрерывно. Металлы имеют кристаллическую решетку, в узлах которой находятся атомы или ионы (+); между ними находятся свободные электроны (электронный газ). Схему связи в металле можно отобразить так:

    М 0 ↔ nē + М n+ ,

    атом ― ион

    где n ― число внешних электронов, участвующих в связи (у Na ― 1 ē , у Са ― 2 ē , у Al ― 3 ē ).Наблюдается этот тип связи в металлах ― простых веществах-металлах и в сплавах.Металлическая связь ― это связь между положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов.Металлическая связь имеет некоторое сходство с ковалентной, но и некоторое отличие, поскольку металлическая связь основана на обобществлении электронов (сходство), в обобществлении этих электронов принимают участие все атомы (отличие). Именно поэтому кристаллы с металлический связью пластичны, электропроводны и имеют металлический блеск. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью, пары металлов состоят из отдельных молекул (одноатомных и двухатомных).Общая характеристика металлов

    Способность атомов отдавать электроны (окисляться)

    ← Возрастает

    Взаимодействие с кислородом воздуха

    Быстро окисляются при обычной температуре

    Медленно окисляются при обычной температуре или при нагревании

    Не окисляются

    Взаимодействие с водой

    При обычной температуре выделяется Н 2 и образуется гидроксид

    При нагревании выделяется Н 2

    Н 2 из воды не вытесняют

    Взаимодействие с кислотами

    Вытесняют Н 2 из разбавленных кислот

    Не вытесняют Н 2 из разбавленных кислот

    Реагируют с конц. и разб. HNO 3 и с конц. H 2 SO 4 при нагревании

    С кислотами не реагируют

    Нахождение в природе

    Только в соединениях

    В соединениях и в свободном виде

    Главным образом в свободном виде

    Способы получения

    Электролиз расплавов

    Восстановлением углем, оксидом углерода(2), алюмотермия, или электролиз водных растворов солей

    Способность ионов присоединять электроны (восстанавливаться)

    Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

    Возрастает →

    Электрохимический ряд напряжений металлов. Физические и химические свойства металлов

    Общие физические свойства металлов Общие физические свойства металлов определяются металлической связью и металлической кристаллической решеткой. Ковкость, пластичность Механическое воздействие на кристалл металла вызывает смещение слоев атомов. Так как электроны в металле перемещаются по всему кристаллу, то разрыва связей не происходит. Пластичность уменьшается в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe . Золото, например, можно прокатывать в листы толщиной не более 0,001 мм, которые используют для позолоты различных предметов. Алюминиевая фольга появилась сравнительно недавно и раньше чай, шоколад поковали в фольгу из олова, которая так и называлась ― станиоль. Однако не обладают пластичностью Mn и Bi: это хрупкие металлы. Металлический блеск Металлический блеск, который в порошке теряют все металлы, кроме Al и Mg . Самые блестящие металлы ― это Hg (из нее изготовляли в средние века знаменитые «венецианские зеркала»), Ag (из него теперь с помощью реакции «серебряного зеркала» изготовляют современные зеркала). По цвету (условно) различают металлы черные и цветные. Среди последних выделим драгоценные ― Au, Ag, Pt. Золото ― металл ювелиров. Именно на его основе изготовляли замечательные пасхальные яйца Фаберже. Звон Металлы звенят, и это свойство используется для изготовления колокольчиков (вспомните Царь-колокол в Московском Кремле). Самые звонкие металлы ― это Au, Ag, Cи. Медь звенит густым, гудящим звоном ― малиновым звоном. Это образное выражение не в честь ягоды-малины, а в честь голландского города Малина, где выплавлялись первые церковные колокола. В России потом русские мастера стали лить колокола даже лучшего качества, а жители городов и поселков жертвовали золотые и серебряные украшения, чтобы отливаемый для храмов колокол звучал лучше. В некоторых русских ломбардах определяли подлинность принимаемых на комиссию золотых колец по звону золотого обручального кольца, подвешенного на женском волосе (слышен очень долгий и чистый высокий звук). При нормальных условиях все металлы, кроме ртути Hg, ― твердые вещества. Самый твердый из металлов ― хром Cr: он царапает стекло. Самые мягкие ― щелочные металлы, они режутся ножом. Щелочные металлы хранят с большими предосторожностями ― Na ― в керосине, а Li ― в вазелине из-за своей легкости, керосин ― в стеклянной баночке, баночка ― в асбестовой крошке, асбест ― в жестяной баночке. Электропроводность Хорошая электрическая проводимость металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному. С повышением температуры усиливаются колебания атомов (ионов), что затрудняет направленное движение электронов и тем самым приводит к уменьшению электрической проводимости. При низких же температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость резко возрастает. Вблизи абсолютного нуля металлы проявляют сверхпроводимость. Наибольшей электрической проводимостью обладают Ag, Cu, Au, Al, Fe; худшие проводники ― Hg, Pb, W. Теплопроводность При обычных условиях теплопроводность металлов изменяется в основном в такой же последовательности, как их электрическая проводимость. Теплопроводность обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе металла. Наибольшая теплопроводность ― у серебра и меди, наименьшая ― у висмута и ртути. Плотность Плотность металлов различна. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов ― литий (плотность 0,53 г/см 3), самый тяжелый ― осмий (плотность 22,6 г/см 3). Металлы с плотностью меньше 5 г/см 3 называются легкими, остальные ― тяжелыми. Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл ― ртуть (t кип = -38,9°С), цезий и галлий ― плавятся соответственно при 29 и 29,8°С. Вольфрам ― самый тугоплавкий металл (t кип = 3390°С). Понятие аллотропии металлов на примере олова Некоторые металлы имеют аллотропные модификации. Например, олово различают на:
      α-олово, или серое олово («оловянная чума» ― превращение обычного β-олова в α-олово при низких температурах стало причиной гибели экспедиции Р. Скотта к Южному полюсу, который потерял все горючее, так как оно хранилось в баках, запаянных оловом), устойчиво при t <14°С, серый порошок. β-олово, или белое олово (t = 14 ― 161°С) очень мягкий металл, но тверже свинца, поддается литью и пайке. Используется в сплавах, например, для изготовления белой жести (луженого железа).
    Электрохимический ряд напряжений металлов и два его правила Расположение атомов в ряд по их реакционной способности может быть представлен следующим образом: Li,K,Ca,Na,Mg,Al, Mn,Zn,Fe,Ni,Sn,Pb, Н 2 , Сu,Hg,Ag,Pt,Au . Положение элемента в электрохимическом ряду показывает, насколько легко он образует ионы в водном растворе, т. е. его реакционную способность. Реакционная способность элементов зависит от способности принимать или отдавать электроны, участвующие в образовании связи. 1-е правило ряда напряжений Если металл стоит в этом ряду до водорода, он способен вытеснять его из растворов кислот, если после водорода, то нет. Например, Zn, Mg, Al давали реакцию замещения с кислотами (они находятся в ряду напряжений до H ), а Cu нет (она после H ). 2-е правило ряда напряжений Если металл стоит в ряду напряжений до металла соли, то он способен вытеснить этот металл из раствора его соли. Например, CuSO 4 + Fe = FeSO 4 + Cu. В таких случаях положение металла до или после водорода может не иметь значения, важно, чтобы вступающий в реакцию металл предшествовал металлу, образующему соль: Cu + 2AgNO 3 = 2Ag + Cu(NO 3) 2 . Общие химические свойства металлов В химических реакциях металлы являются восстановителями (отдают электроны). Взаимодействие с простыми веществами .
      С галогенами металлы образуют соли ― галогениды:
    Mg + Cl 2 = MgCl 2 ; Zn + Br 2 = ZnBr 2 .
      С кислородом металлы образуют оксиды:
    4Na + O 2 = 2 Na 2 O; 2Cu + O 2 = 2CuO.
      С серой металлы образуют соли ― сульфиды:
    Fe + S = FeS.
      С водородом самые активные металлы образуют гидриды, например:
    Са + Н 2 = СаН 2 .
      с углеродом многие металлы образуют карбиды:
    Са + 2С = СаС 2 . Взаимодействие со сложными веществами
      Металлы, находящиеся в начале ряда напряжений (от лития до натрия), при обычных условиях вытесняют водород из воды и образуют щелочи, например:
    2Na + 2H 2 O = 2NaOH + H 2 .
      Металлы, расположенные в ряду напряжений до водорода, взаимодействуют с разбавленными кислотами (НCl, Н 2 SO 4 и др.), в результате чего образуются соли и выделяется водород, например:
    2Al + 6НCl = 2AlCl 3 + 3H 2 .
      Металлы взаимодействуют с растворами солей менее активных металлов, в результате чего образуется соль более активного металла, а мене активный металл выделяется в свободном виде, например:
    CuSO 4 + Fe = FeSO 4 + Cu.

    Металлы в природе.

    Нахождение металлов в природе. Большинство металлов встречается в природе в виде различных соединений: активные металлы находятся только в виде соединений; малоактивные металлы ― в виде соединений и в свободном виде; благородные металлы (Аg, Рt, Аu...) в свободном виде.Самородные металлы обычно содержатся в небольших количествах в виде зерен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов ― самородки. Многие металлы в природе существуют в связанном состоянии в виде химических природных соединений ― минералов . Очень часто это оксиды, например минералы железа: красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ∙ 3Н 2 О, магнитный железняк Fe 3 O 4 .Минералы входят в состав горных пород и руд. Рудами называют содержащие минералы природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности.По химическому составу минерала, входящего в руду, различают оксидные, сульфидные и другие руды.Обычно перед получением металлов из руды ее предварительно обогащают ― отделяют пустую горную породу, примеси, в результате образуется концентрат, служащий сырьем для металлургического производства.Способы получения металлов. Получение металлов из их соединений ― это задача металлургии. Любой металлургический процесс является процессом восстановления ионов металла с помощью различных восстановителей, в результате чего получаются металлы в свободном виде. В зависимости от способа проведения металлургического процесса различают пирометаллургию, гидрометаллургию и электрометаллургию.Пирометаллургия ― это получение металлов из их соединений при высоких температурах с помощью различных восстановителей: углерода, оксида углерода (II), водорода, металлов (алюминия, магния) и др.Примеры восстановления металлов
      углем:
    ZnO + C → Zn + CO 2 ;
      оксидом углерода:
    Fe 2 O 3 + 3CO → 2Fe + 3CO 2 ;
      водородом:
    WO 3 + 3H 2 → W + 3Н 2 О; CoO + H 2 → Co + Н 2 О;
      алюминием (алюмотермия):
    4Al + 3MnO 2 → 2Al 2 O 3 + 3Mn; Cr 2 O 3 + 2Al = 2Al 2 O 3 + 2Cr;
      магнием:
    TiCl 4 + 2Mg = Ti + 2MgCl 2 .Гидрометаллургия ― это получение металлов, которое состоит из двух процессов: 1) природное соединение металла растворяется в кислоте, в результате чего получается раствор соли металла; 2) из полученного раствора данный металл вытесняется более активным металлом. Например:
      2CuS + 3О 2 = 2CuO + 2SО 2 .
    CuO + H 2 SO 4 = CuSO 4 + H 2 O.
      CuSO 4 + Fe = FeSO 4 + Cu.
    Электрометаллургия ― это получение металлов при электролизе растворов или расплавов их соединений. Роль восстановителя в процессе электролиза играет электрический ток.

    Общая характеристика металлов IА-группы.

    К металлам главной подгруппы первой группы (IА-группы) относятся литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr). Эти металлы называются щелочными, так как они и их оксиды при взаимодействии с водой образуют щелочи.Щелочные металлы относятся к s-элементам. На внешнем электронном слое у атомов металлов один s-электрон (ns 1).Калий, натрий ― простые вещества

    Щелочные металлы в ампулах:
    а - цезий; б - рубидий; в - калий; г – натрийОсновные сведения об элементах IА группы

    Элемент Li литий Na натрий K калий Rb рубидий Cs цезий Fr франций
    Атомный номер 3 11 19 37 55 87
    Строение внешних электрон-ных оболочек атомов ns 1 np 0 ,где n = 2, 3, 4, 5, 6, 7, n ― номер периода
    Степень окисления +1 +1 +1 +1 +1 +1
    Основные природные соединения

    Li 2 O·Al 2 O 3 · 4SiO 2 (сподумен); LiAl(PO 4)F, LiAl(PO 4)OH (амблигонит)

    NaCl (поварен-ная соль); Na 2 SO 4 · 10H 2 O (глауберо-ва соль, мираби-лит); КCl·NaCl (сильви-нит)

    КCl (сильвин), КCl·NaCl (сильвинит); K (калиевый полевой шпат, ортоглаз); KCl·MgCl 2 ·6H 2 O (карналлит) ― содержится в растениях

    В качестве изоаморф-ной примеси в минералах калия ― сильвини-те и кар-наллите

    4Cs 2 O·4Al 2 O 3 ·18 SiO 2 · 2H 2 O (полу-цит); спутник минера-лов калия

    Продукт α-распада актиния
    Физические свойства Калий и натрий ― мягкие серебристые металлы (режутся ножом); ρ(К) = 860 кг/м 3 , Т пл (К) = 63,7°С, ρ(Na) = 970 кг/м 3 , Т пл (Na) = 97,8°С. Обладают высокой тепло- и электропроводностью, окрашивают пламя в характерные цвета: К ― в бледно-фиолетовый цвет, Na ― в желтый цвет.