Как избавиться от числителя. Как в дроби избавиться от иррациональности в знаменателе

Токарев Кирилл

Работа помогает научиться извлекать квадратный корень из любого числа без применения калькулятора и таблицы квадратов и освобождать знаменатель дроби от иррациональности.

Освобождение от иррациональности знаменателя дроби

Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение.

Извлечение квадратного корня с приближением до заданного разряда.

Пусть нужно извлечь квадратный корень из натурального числа 17358122, причем известно, что корень извлекается. Чтобы найти результат, иногда удобно воспользоваться описанным в работе правилом.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Радикал. Освобождение от иррациональности знаменателя дроби. Извлечение квадратного корня с заданной степенью точности. Ученика 9Б класса МОУ СОШ №7 г. Сальска Токарева Кирилла

ОСНОВОПОЛАГАЮЩИЙ ВОПРОС: Можно ли извлечь квадратный корень из любого числа с заданной степенью точности, не имея калькулятора и таблицы квадратов?

ЦЕЛИ И ЗАДАЧИ: Рассмотреть случаи решения выражений с радикалами, не изучаемые в школьном курсе математики, но необходимые на ЕГЭ.

ИСТОРИЯ КОРНЯ Знак корня происходит из строчной латинской буквы r (начальной в латинском слове radix – корень), сросшейся с надстрочной чертой. В старину надчёркивание выражения использовалось вместо нынешнего заключения в скобки, так что есть всего лишь видоизменённый древний способ записи чего-то вроде. Впервые такое обозначение использовал немецкий математик Томас Рудольф в 1525 году.

ОСВОБОЖДЕНИЕ ОТ ИРРАЦИОНАЛЬНОСТИ ЗНАМЕНАТЕЛЯ ДРОБИ Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение. АЛГОРИТМ ОСВОБОЖДЕНИЯ ОТ ИРРАЦИОНАЛЬНОСТИ В ЗНАМЕНАТЕЛЕ ДРОБИ: 1. Разложить знаменатель дроби на множители. 2. Если знаменатель имеет вид или содержит множитель, то числитель и знаменатель следует умножить на. Если знаменатель имеет вид или или содержит множитель такого вида, то числитель и знаменатель дроби следует умножить соответственно на или на. Числа и называют сопряжёнными. 3. Преобразовать числитель и знаменатель дроби, если возможно, то сократить полученную дробь.

а) б) в) г) = - Освобождение от иррациональности в знаменателе дроби.

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. 1) -1 100 96 400 281 11900 11296 24 4 281 1 2824 4 16 135 81 5481 4956 52522 49956 81 1 826 6 8326 6 2) Древневавилонский способ: Пример: Найти. Для решения задачи данное число разлагается на сумму двух слагаемых: 1700 = 1600 + 100 = 40 2 + 100, первое из которых является полным квадратом. Затем применяем формулу. Алгебраический способ:

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. , 4 16 8 . 1 1 1 3 5 1 8 1 5 4 8 1 8 2 + 66 4 9 5 6 6 5 2 5 2 2 + 8 3 2 66 4 9 9 5 6 6 + 8 3 3 2 33 2 5 6 6 0 0 ,3

Список литературы 1. Сборник задач по математике для поступающих в вузы под редакцией М.И.Сканави. В. К.Егерев, Б.А.Кордемский, В. В. Зайцев, “ ОНИКС 21 век ” , 2003г. 2. Алгебра и элементарные функции. Р. А. Калнин, “ Наука ” , 1973г. 3. Математика. Справочные материалы. В. А. Гусев, А. Г. Мордкович, издательство “ Просвещение ” , 1990г. 4. Школьникам о математике и математиках. Составитель М.М.Лиман, Просвещение, 1981г.

Существует несколько типов иррациональности дроби в знаменателе. Она связана с присутствием в нем алгебраического корня одной либо разных степеней. Дабы избавиться от иррациональности , необходимо исполнить определенные математические действия в зависимости от обстановки.

Инструкция

1. Раньше чем избавиться от иррациональности дроби в знаменателе, следует определить ее тип, и в зависимости от этого продолжать решение. И правда любая иррациональность следует из простого присутствия корней, разные их комбинации и степени полагают различные алгорифмы.

2. Квадратный корень в знаменателе, выражение вида a/?bВведите добавочный множитель, равный?b. Дабы дробь не изменилась, умножать необходимо и числитель, и знаменатель:a/?b ? (a ?b)/b.Пример 1: 10/?3 ? (10 ?3)/3.

3. Присутствие под чертой дроби корня дробной степени вида m/n, причем n>mЭто выражение выглядит дальнейшим образом:a/?(b^m/n).

4. Избавьтесь от сходственной иррациональности также путем ввода множителя, на данный раз больше трудного: b^(n-m)/n, т.е. из показателя степени самого корня необходимо вычесть степень выражения под его знаком. Тогда в знаменателе останется только первая степень:a/(b^m/n) ? a ?(b^(n-m)/n)/b.Пример 2: 5/(4^3/5) ? 5 ?(4^2/5)/4 = 5 ?(16^1/5)/4.

5. Сумма квадратных корнейУмножьте обе составляющих дроби на аналогичную разность. Тогда из иррационального сложения корней знаменатель преобразуется в разность выражений/чисел под знаком корня:a/(?b + ?c) ? a (?b – ?c)/(b – c).Пример 3: 9/(?13 + ?23) ? 9 (?13 – ?23)/(13 – 23) = 9 (?23 – ?13)/10.

6. Сумма/разность кубических корнейВыберите в качестве добавочного множителя неполный квадрат разности, если в знаменателе стоит сумма, и соответственно неполный квадрат суммы для разности корней:a/(?b ± ?c) ? a (?b? ? ?(b c) + ?c?)/ ((?b ± ?c) ?b? ? ?(b c) + ?c?) ?a (?b? ? ?(b c) + ?c?)/(b ± c).Пример 4: 7/(?5 + ?4) ? 7 (?25- ?20 + ?16)/9.

7. Если в задаче присутствует и квадратный и кубический корень, тогда поделите решение на два этапа: ступенчато выведите из знаменателя квадратный корень, а после этого кубический. Делается это по теснее знаменитым вам способам: в первом действии необходимо предпочесть множитель разности/суммы корней, во втором – неполный квадрат суммы/разности.

Совет 2: Как избавиться от иррациональности в знаменателе

Правильная запись дробного числа не содержит иррациональности в знаменателе . Такая запись и легче понимается на вид, следственно при возникновении иррациональности в знаменателе умно от нее избавиться. В этом случае иррациональность может перейти в числитель.

Инструкция

1. Для начала дозволено разглядеть примитивный пример – 1/sqrt(2). Квадратный корень из 2-х – иррациональное число в знаменателе .В этом случае нужно домножить числитель и знаменатель дроби на ее знаменатель. Это обеспечит разумное число в знаменателе . Подлинно, sqrt(2)*sqrt(2) = sqrt(4) = 2. Умножение 2-х идентичных квадратных корней друг на друга даст в результате то, что находится под всем из корней: в данном случае – двойку.В результате: 1/sqrt(2) = (1*sqrt(2))/(sqrt(2)*sqrt(2)) = sqrt(2)/2. Данный алгорифм подходит также к дробям, в знаменателе которых корень умножается на разумное число. Числитель и знаменатель в этом случае надобно умножить на корень, находящийся в знаменателе .Пример: 1/(2*sqrt(3)) = (1*sqrt(3))/(2*sqrt(3)*sqrt(3)) = sqrt(3)/(2*3) = sqrt(3)/6.

2. Безусловно подобно надобно делать, если в знаменателе находится не квадратный корень, а, скажем кубический либо всякий иной степени. Корень в знаменателе необходимо умножать на верно такой же корень, на данный же корень умножать и числитель. Тогда корень перейдет в числитель.

3. В больше трудном случае в знаменателе присутствует сумма либо разность иррационального и разумного числа либо 2-х иррациональных чисел.В случае суммы (разности) 2-х квадратных корней либо квадратного корня и разумного числа дозволено воспользоваться классно знаменитой формулой (x+y)(x-y) = (x^2)-(y^2). Она поможет избавиться от иррациональности в знаменателе . Если в знаменателе разность, то домножать числитель и знаменатель надобно на сумму таких же чисел, если сумма – то на разность. Эта домножаемая сумма либо разность будет именоваться сопряженной к выражению, стоящему в знаменателе .Результат этой схеме отменно виден на примере: 1/(sqrt(2)+1) = (sqrt(2)-1)/(sqrt(2)+1)(sqrt(2)-1) = (sqrt(2)-1)/((sqrt(2)^2)-(1^2)) = (sqrt(2)-1)/(2-1) = sqrt(2)-1.

4. Если в знаменателе присутствует сумма (разность), в которой присутствует корень большей степени, то обстановка становится нетривиальной и освобождение от иррациональности в знаменателе не неизменно допустимо

Совет 3: Как освободиться от иррациональности в знаменателе дроби

Дробь состоит из числителя, расположенного сверху линии, и знаменателя, на тот, что он делится, расположенного внизу. Иррациональным именуется число, которое не может быть представлено в виде дроби с целым числом в числителе и естественным в знаменателе . Такими числами являются, скажем, квадратный корень из 2-х либо пи. Традиционно, когда говорят об иррациональности в знаменателе , подразумевается корень.

Инструкция

1. Избавьтесь от иррациональности умножением на знаменатель. Таким образом иррациональность будет перенесена в числитель. При умножении числителя и знаменателя на одно и то же число, значение дроби не меняется. Воспользуйтесь этим вариантом, если каждый знаменатель представляет собой корень.

2. Умножьте числитель и знаменатель на знаменатель надобное число раз, в зависимости от корня. Если корень квадратный, то один раз.

3. Разглядите пример с квадратным корнем. Возьмите дробь (56-y)/√(x+2). В ней есть числитель (56-y) и иррациональный знаменатель √(x+2), представляющий собой квадратный корень.

4. Умножьте числитель и знаменатель дроби на знаменатель, то есть на √(x+2). Первоначальный пример (56-y)/√(x+2) превратится в ((56-y)*√(x+2))/(√(x+2)*√(x+2)). В результате получится ((56-y)*√(x+2))/(x+2). Сейчас корень находится в числителе, а в знаменателе нет иррациональности.

5. Не неизменно знаменатель дроби каждый находится под корнем. Избавьтесь от иррациональности, воспользовавшись формулой (x+y)*(x-y)=x²-y².

6. Разглядите пример с дробью (56-y)/(√(x+2)-√y). Ее иррациональный знаменатель содержит разницу 2-х квадратных корней. Дополните знаменатель до формулы (x+y)*(x-y).

7. Умножьте знаменатель на сумму корней. Умножьте на то же самое числитель, дабы значение дроби не изменилось. Дробь примет вид ((56-y)*(√(x+2)+√y))/((√(x+2)-√y)*(√(x+2)+√y)).

8. Воспользуйтесь вышеупомянутым свойством (x+y)*(x-y)=x²-y² и освободите знаменатель от иррациональности. В итоге получится ((56-y)*(√(x+2)+√y))/(x+2-y). Сейчас корень находится в числителе, а знаменатель избавился от иррациональности.

9. В трудных случаях повторяйте оба этих варианта, применяя по необходимости. Учтите, что не неизменно допустимо избавиться от иррациональности в знаменателе .

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают всякие числовые либо буквенные выражения. Нередко числитель и знаменатель в алгебраических дробях имеют массивный вид, но действия с такими дробями следует делать по тем же правилам, что и действия с обычными, где числитель и знаменатель - целые позитивные числа.

Инструкция

1. Если даны смешанные дроби , переведите их в неправильные (дробь, в которой числитель огромнее знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

2. Если нужно перевести десятичную дробь в неправильную, то представьте ее как деление числа без запятой на единицу со столькими нулями, сколько чисел стоит позже запятой. Скажем, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 – как 361/100. Оперировать с неправильными дробями нередко легче, чем со смешанными либо десятичными.

3. Если дроби имеют идентичные знаменатели, а вам нужно их сложить, то примитивно сложите числители; знаменатели остаются без изменений.

4. При необходимости произвести вычитание дробей с идентичными знаменателями из числителя первой дроби вычтите числитель 2-й дроби. Знаменатели при этом также не меняются.

5. Если нужно сложить дроби либо вычесть одну дробь из иной, а они имеют различные знаменатели, приведите дроби к всеобщему знаменателю. Для этого обнаружьте число, которое будет наименьшим всеобщим кратным (НОК) обоим знаменателям либо нескольким, если дробей огромнее 2-х. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

6. Позже знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к всему слагаемому добавочные множители - то число, на которое нужно домножить и числитель, и знаменатель, дабы получить НОК. Ступенчато умножайте числители на добавочные множители, сберегая знак сложения либо вычитания.

7. Посчитайте итог, сократите его при необходимости либо выделите целую часть. Для примера – нужно сложить? и?. НОК для обеих дробей - 12. Тогда добавочный множитель к первой дроби - 4, ко 2-й - 3. Итого: ?+?=(1·4+1·3)/12=7/12.

8. Если дан пример на умножение, перемножьте между собой числители (это будет числитель итога) и знаменатели (получится знаменатель итога). В этом случае к всеобщему знаменателю их приводить не нужно.

9. Дабы поделить дробь на дробь, нужно опрокинуть вторую дробь «вверх ногами» и перемножить дроби. То есть а/b: с/d = a/b · d/c.

10. Раскладывайте числитель и знаменатель на множители, если это требуется. Скажем, переносите всеобщий множитель за скобку либо раскладывайте по формулам сокращённого умножения, дабы после этого дозволено было при необходимости сократить числитель и знаменатель на НОД – минимальный всеобщий делитель.

Обратите внимание!
Числа складывайте с числами, буквы одного рода с буквами того же рода. Скажем, невозможно сложить 3a и 4b, значит в числителе так и останется их сумма либо разность - 3a±4b.

В быту почаще каждого встречаются не настоящие числа: 1, 2, 3, 4 и т.д. (5 кг. картофеля), а дробные, нецелые числа (5,4 кг лука). Множество из них представлены в виде десятичных дробей. Но десятичную дробь представить в виде дроби довольно легко.

Инструкция

1. Скажем, дано число “0,12”. Если не уменьшать эту десятичную дробь и представить ее так, как есть, то выглядеть она будет так: 12/100 (“двенадцать сотых”). Дабы избавиться от сотни в знаменателе, надобно и числитель, и знаменатель поделить на такое число, которое делит их на целые числа. Это число 4. Тогда, поделив числитель и знаменатель, получается число: 3/25.

2. Если рассматривать больше бытовую обстановку, то зачастую на ценнике у продуктов видно, что вес его составляет, к примеру, 0,478 кг либо пр. Такое число тоже легко представить в виде дроби :478/1000 = 239/500. Дробь эта довольно уродливая, и если бы была вероятность, то эту десятичную дробь дозволено было бы уменьшать и дальше. И все тем же способом: подбора числа, которое делит как числитель, так и знаменатель. Это число именуется наибольшим всеобщим множителем. “Наибольшим” множитель назван потому, что значительно комфортнее и числитель, и знаменатель сразу поделить на 4 (как в первом примере), чем разделять двукратно на 2.

Видео по теме

Десятичная дробь – разновидность дроби , у которой в знаменателе есть “круглое” число: 10, 100, 1000 и т.д., Скажем, дробь 5/10 имеет десятичную запись 0,5. Исходя из этого тезиса, дробь дозволено представить в виде десятичной дроби .

Инструкция

1. Возможен, нужно представить в виде десятичной дробь 18/25.Вначале надобно сделать так, дабы в знаменателе возникло одно из “круглых” чисел: 100, 1000 и т.д. Для этого надобно знаменатель умножить на 4. Но на 4 понадобится умножить и числитель, и знаменатель.

2. Умножив числитель и знаменатель дроби 18/25 на 4, получается 72/100. Записывается эта дробь в десятичном виде так: 0,72.

При делении 2-х десятичных дробей, когда под рукой не оказывается калькулятора, многие испытывают некоторые затруднения. На самом деле здесь нет ничего трудного. Десятичные дроби именуются таковыми, если в их знаменателе число, кратное 10. Как водится, такие числа записываются в одну строчку и имеют запятую, отделяющую дробную часть от целой. Видимо по причине наличия дробной части, которая к тому же отличается числом знаков позже запятой, многим не ясно, как изготавливать без калькулятора математические действия с такими числами.

Вам понадобится

  • лист бумаги, карандаш

Инструкция

1. Выходит, для того, дабы поделить одну десятичную дробь на иную, надобно посмотреть на оба числа и определить, у какого из них огромнее знаков позже запятой. Умножаем оба числа на число, кратное 10, т.е. 10, 1000 либо 100000, число нулей в котором равно большему числу знаков позже запятой одного из 2-х наших начальных чисел. Сейчас обе десятичные дроби превратились в обычные целые числа. Берем лист бумаги с карандашом и разделяем два получившихся числа “уголком”. Получаем итог.

2. Скажем, нам надобно поделить число 7,456 на 0,43. Первое число имеет огромнее знаков позже запятой (3 знака), следственно умножаем оба числа не 1000 и получаем два примитивных целых числа: 7456 и 430. Сейчас разделяем “уголком” 7456 на 430 и получаем, что, если 7,456 поделить 0,43 выйдет приблизительно 17,3.

3. Существует еще один метод деления. Записываем десятичные дроби в виде примитивных дробей с числителем и знаменателем, для нашего случая это 7456/1000 и 43/100. Позже этого записываем выражение для деления 2-х примитивных дробей:7456*100/1000*43,после этого уменьшаем десятки, получаем:7456/10*43 = 7456/430В финальном выводе вновь получаем деление 2-х примитивных чисел 7456 и 430, которое дозволено произвести “уголком”.

Видео по теме

Полезный совет
Таким образом, способ деления десятичных дробей заключается к приведению их к целым числам с поддержкой умножения всякого из них на одно и то же число. Выполнение операций с целыми числами, как водится, не вызывает ни у кого сложностей.

Видео по теме

Освобождение от иррациональности в знаменателе дроби

2015-06-13

Сопряженное иррациональное выражение

При преобразовании дробного алгебраического выражения, в знаменателе которого записано иррациональное выражение, обычно стремятся представить дробь так, чтобы ее знаменатель был рациональным. Если $A, B, C, D, \cdots$ - некоторые алгебраические выражения, то можно указать правила, с помощью которых можно освободиться от знаков радикала в знаменателе выражений вида

$\frac{A}{\sqrt[n]{B}}, \frac{A}{B+C \sqrt{D}}, \frac{A}{\sqrt{B} + c \sqrt{D}}, \frac{A}{ \sqrt{B} \pm \sqrt{C}}$ и т.д.

Во всех этих случаях освобождение от иррациональности производится умножением числителя и знаменателя дроби на множитель, выбранный так, чтобы его произведение на знаменатель дроби было рациональным.

1) Для освобождения от иррациональности в знаменателе дроби вида $A/ \sqrt[n]{B}$ умножаем числитель и знаменатель на $\sqrt[n]{B^{n-1}}$.
$\frac{A}{\sqrt[n]{B}} = \frac{A \sqrt[n]{B^{n-1}}}{\sqrt[n]{B} \sqrt[n]{B^{n-1}}} = \frac{A \sqrt[n]{B^{n-1}}}{B}$.

Пример 1. $\frac{4a^{2}b}{\sqrt{2ac}} = \frac{4a^{2}b \sqrt{4a^{2}c^{2}}}{2ac} = \frac{2ab}{c} \sqrt{4a^{2}c^{2}}$.

В случае дробей вида $\frac{A}{B+ C \sqrt{D}}, \frac{A}{\sqrt{B} + c \sqrt{D}}$ умножаем числитель и знаменатель на иррациональный множитель
$B – C \sqrt{D}$ или $\sqrt{B} – c \sqrt{D}$
соответственно, т. е. на сопряженное иррациональное выражение.

Смысл последнего действия состоит в том, что в знаменателе произведение суммы на разность преобразуется в разность квадратов, которая уже будет рациональным выражением.

Пример 2. Освободиться от иррациональности в знаменателе выражения:
а) $\frac{xy}{\sqrt{x^{2} + y^{2}} + x}$; б) $\frac{2}{\sqrt{5} - \sqrt{3}}$.

Решение, а) Умножаем числитель и знаменатель дроби на
выражение $\sqrt{x^{2} + y^{2}} - x$. Получаем (при условии, что $y \neq 0$)
$\frac{xy}{\sqrt{x^{2} + y^{2}} + x} = \frac{xy (\sqrt{x^{2} + y^{2}} - x)}{(x^{2} + y^{2}) – x^{2}} = \frac{x}{y} (\sqrt{x^{2} + y^{2}} - x)$;
б) $\frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3} = \sqrt{5} + \sqrt{3}$.
3) В случае выражений типа
$\frac{A}{B \pm C \sqrt{D}}, \frac{A}{\sqrt{B} \pm C \sqrt{D}}$
знаменатель рассматривается как сумма (разность) и умножается на неполный квадрат разности (суммы), чтобы получить сумму (разность) кубов. На тот же множитель умножается и числитель.

Пример 3. Освободиться от иррациональности в знаменателе выражений:
а)$\frac{3}{\sqrt{5} + 1}$; б)$\frac{1}{\sqrt{a} – 2 \sqrt{b}}$

Решение, а) Рассматривая знаменатель данной дроби как сумму чисел $\sqrt{5}$ и $1$, умножим числитель и знаменатель на неполный квадрат разности этих чисел:
$\frac{3}{\sqrt{5} + 1} = \frac{3 (\sqrt{5^{2}} - \sqrt{5} +1)}{(\sqrt{5} + 1)(\sqrt{5^{2}} - \sqrt{5} + 1)} = \frac{3(\sqrt{25} - \sqrt{5} + 1)}{(\sqrt{5})^{3} +1}$,
или окончательно:
$\frac{3}{\sqrt{5} + 1} = \frac{3(\sqrt{25} - \sqrt{5} + 1)}{6} = \frac{\sqrt{25} - \sqrt{5} + 1}{2}$
б) $\frac{1}{\sqrt{a} – 2 \sqrt{b}} = \frac{\sqrt{a^{2}} + 2 \sqrt{ab} + 4 \sqrt{b^{2}}}{(\sqrt{a})^{3} – (2 \sqrt{b})^{3}} = \frac{ \sqrt{a^{2}} + 2 \sqrt{ab} + 4 \sqrt{b^{2}}}{a-8b}$.

В некоторых случаях требуется выполнить преобразование противоположного характера: освободить дробь от иррациональности в числителе. Оно проводится совершенно аналогично.

Пример 4. Освободиться от иррациональности в числителе $\frac{\sqrt{a+b} - \sqrt{a-b}}{2b}$.
Решение. $ \frac{\sqrt{a+b} - \sqrt{a-b}}{2b} = \frac{(a+b) – (a-b)}{2b(\sqrt{a+b} + \sqrt{a-b})} = \frac{1}{\sqrt{a+b} + \sqrt{a-b}}$

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.