Самые необычные дорожные развязки (5 фото). Основные схемы транспортных развязок Удобная транспортная развязка

То, что вы видите перед собой на заглавной фотографии - это ни что иное, как новая концепция перекрестка на шоссе, которая направлена на устранение необходимости левого поворота, тем самым снижая риск серьезных ДТП в разы. Согласны, что с первого взгляда все это нагромождение полос выглядит как полный хаос, но спецы утверждают, что за такими безопасными развязками будущее.

Концепция, на самом деле, не нова. Впервые подобный вариант развязки был предложен студентом-инженером много лет назад, в 2000 году данный тип развязки появился на страницах дипломной работы Гилберта Хлевицки, хотя, как утверждают некоторые источники, подобные ранее строились во Франции, правда в небольших количествах.

С тех пор похожие по дизайну развязки в виде эксперимента начали появляться на дорогах США. Эксперимент расширялся и на данный момент на территории нескольких штатов функционирует более 100 подобных развязок.

Самая крупная из них находится во Флориде, где в прошлом году дорожники завершили расходящуюся алмазную развязку (эти огромные перекрестки так называют за счет своеобразной формы соединения внутренних дорог) на Университетском бульваре на линии Манати и округа Сарасота, которая в самом широком месте составляет до 12 полос движения. (Карту «алмазных развязок» по всему миру можно найти здесь.)

В чем суть и смысл такой развязки? Концепция довольно проста: меньше точек остановок для водителей, большая пропускная способность, меньше пробок и полное устранение левых поворотов, пересекающих встречное движение. Вот официальное видео от Департамента транспорта Флориды, показывающее, как все это работает:

Как видно из ролика, перекрещивание двух встречных направлений движения под мостом убирает необходимость левого поворота против движения.

Правда, те из водителей, которые уже испытали на себе все прелести автомобильной урбанизации нового поколения, заявили, что для понимания того, куда нужно ехать и как все это работает необходимо несколько раз проехать по сложному перекрестку. Очень редко кто с первого раза способен пройти испытание и уехать в нужном направлении.

Исследователи, однако, заявили, что так называемые «расходящиеся алмазные развязки» снижают случаи смертельных аварий более чем на 60 процентов, а обычные аварии примерно на 33 процента. Они также могут быть сконструированы с размещенными на них вело- и пешеходными дорожками. На видео это продемонстрированно.

Как дела на самой большой из развязок во Флориде? Довольно хорошо, согласно сообщению, на веб-сайте America"s Transportation Awards, организации, частично спонсируемой AAA и торговой палатой США.

С момента открытия автомобилисты, использующие эту у, испытали на себе 40-процентное сокращение задержек в поездках, уменьшение автомобильных аварий до 50 процентов за счет уменьшения количества так называемых конфликтных точек и повышения мобильности.

Что дадут новые развязки и появятся ли они не только в США, а в других странах мира, например, в России? Главным образом, на наш взгляд, «алмазные развязки» показывают очень важный тренд современных крупных шоссе. Поворот налево рано или поздно должен с них полностью уйти, в том числе в виде стрелки на светофоре.

  • 8. Основы теории проектирования трассы автомобильной дороги (уравнение движения автомобиля).
  • 9. Особенности проектирования переходных кривых на транспортных развязках.
  • 10. Расчетные схемы (формулы) определения расстояний видимости в плане и профили.
  • 11. Основные принципы ландшафтного проектирования автодорог.
  • 12. Ровность проезжей части - факторы влияющие на ровность и показатели «страдающие» от ровности.
  • 13. Колейность на покрытиях и методы ее предотвращения и ликвидации.
  • 14. Состав проекта автомобильной дороги, документы, степень детализации.
  • 15. Автоматизированные системы управления дорожным движением в современных условиях.
  • 16. Локальные очистные сооружения - виды, конструкции, принципы работы.
  • 17. Защита от транспортного и технологического шума в зоне трассы автодороги.
  • 18. Метеорологическое обеспечение безопасности дорожного движения.
  • 1.Мероприятия, предусматриваемые в проектах дорог
  • 2. Мероприятия, осуществляемые дорожной службой в процессе эксплуатации
  • 19. Принципы дорожно-климатического районирования (зонирования) территории рф.
  • 20. Современные системы автоматизированного проектирования дорог: credo, robur.
  • 21. Состав работ по инженерным изысканиям под новое строительство и реконструкцию автодорог.
  • 22. Современные геоинформационные технологии применяемые в дорожном строительстве.
  • 23. Особенности инженерных изысканий на мостовых переходах (состав работ, оборудование, документы).
  • 24. Мероприятия по обеспечению устойчивости земляного полотна на неустойчивых склонах (оползни, осыпи, обвалы...)
  • 25. Вертикальная планировка городских территорий, улиц, перекрестков: методы, представляемые документы.
  • 27. Теоретическая пропускная способность 1 полосы движения.
  • 28. Водно-тепловой режим земляного полотна - процессы в годовом цикле.
  • 29. Пересечения и примыкания автомобильных дорог в одном уровне: планировочные решения, требования безопасности движения.
  • 30. Комплексы по обслуживанию дорожного движения в современных условиях.
  • 31. Особенности конструкций земляного полотна в 1-й дорожно-климатической зоне. Наледи на дорогах и в малых искусственных сооружениях.
  • 32. Производственные предприятия дорожного строительства: карьеры, абз, цбз, базы инертных материалов.
  • 33. Методика определения перспективной интенсивности движения при назначении категории дороги (загородной и городской).
  • 34. Типы дорожных одежд и виды покрытий по капитальности.
  • 35. Назначение виража, методика проектирования отгона виража.
  • 37. Классификация дорожных одежд. Конструирование одежд разных типов. Конструктивные слои дорожной одежды, их назначение.
  • 38. Расчет дорожных одежд нежесткого типа на прочность.
  • 39. Расчет дорожных одежд на морозоустойчивость. Мероприятия по обеспечению морозоустойчивости.
  • 40. Расчет жестких дорожных одежд.
  • 1. Расчет дорожной одежды на морозоустойчивость
  • 2. Расчёт бетонной плиты на прочность
  • 3. Расчет температурных напряжений в бетонных плитах
  • 41. Схемы транспортных развязок в разных уровнях.
  • 42. Проектирование съездов для правых и левых поворотов (нормы и техусловия).
  • 43. Мероприятия по обеспечению устойчивости земляного полотна.
  • 44. Методика гидрологических расчетов для назначения расчетного расхода при проектировании мостовых переходов.
  • 45. Назначение отверстий больших и средних мостов. Расчет общего и местного размывов. Проектирование подходов к мостам и регуляционных сооружений.
  • 46. Назначение и функциональная роль геосинтетических материалов в конструкциях дорожных одежд, разновидности и область применения.
  • 47. Характеристика битумов, применяемых в дорожном строительстве. Методы улучшения свойств битумов.
  • 48. Асфальтобетон. Классификация, св-ва, требования, определение физико-механических показателей, применение в дорожном строительстве. Применение щма, литого а/б. Компакт-асфальт.
  • 49. Устройство оснований из грунтов, укрепленных минеральными и органическими вяжущими материалами.
  • 50. Технология приготовления горячего асфальтобетона.
  • 51. Основные способы активации битумов. Контроль и оценка качества асфальтобетонных смесей.
  • 52. Технологический (операционный) контроль и приемка асфальтобетонных покрытий. Требования нормативов по допускам.
  • 53. Методы повышения производительности землеройных машин.
  • 54. Организация и технология выторфовывания грунтов экскаваторами.
  • 55. Особенности движения на городских дорогах, их конструктивные отличия от автомобильных (загородных) дорог.
  • 56. Природные каменные материалы и отходы промышленности, направления, и обоснование целесообразности их использования в дорожном строительстве.
  • 57. Сборные покрытия дорог, современные конструктивные решения и технология укладки.
  • 58. Технология изготовления бетонных изделий на заводах жби.
  • 59. Состав и разработка бизнес-плана строительной организации.
  • 60. Методы организации дорожного строительства. Оптимизация моделей организации работ.
  • 61. Технологии устройства земляного полотна на болотах.
  • 62. Методы оценки транспортно-эксплуатационного состояния автомобильных и городских дорог.
  • 63. Методы организации дорожного движения.
  • 64. Технические средства организации дорожного движения.
  • 65. Методы оценки и прогнозирования сроков службы дорожных одежд нежесткого типа на основе теории риска.
  • 66. Способы борьбы с зимней скользкостью и снегозаносимостью при содержании автомобильных и городских дорог.
  • 67. Основные требования к транспортно-эксплуатационным показателям дорожных покрытий.
  • 68. Методы оценки прочности дорожных одежд. Основные виды и причины возникновения деформаций и разрушений дорожных одежд.
  • 69. Влияние технологических факторов строительства дорог и движения транспорта на природную среду.
  • 70. Основы теории и способы уплотнения грунтов, контроль при уплотнении.
  • 3.Метод режущего кольца
  • 4.Плотномер-влагомер Ковалёва
  • 71. Устройство брусчатых мозаиковых, клинкерных и блочных мостовых, конструктивные решения и технология.
  • 72. Руководящие документы, нормы и правила по охране окружающей среды.
  • 73. Методы управления дорожным движением на автомобильных и городских дорогах в современных условиях.
  • 74. Автоматическое регулирование уличного движения на магистралях города.
  • 75. Способы повышения шероховатости, cцепных качеств а/б покрытий.
  • 76. Классификация работ при реконструкции и ремонте дорог.
  • 77. Пропускная способность существующих дорог и мероприятия по ее повышению.
  • 78. Способы уширения земляного полотна при реконструкции дорог.
  • 79. Реконструкция дорожных одежд. Регенерация асфальтобетонных покрытий. Особенности технологии и организации работ при реконструкции дорог.
  • 80. Теоретические основы влагонакопления в земляном полотне и дорожной одежде.
  • 81. Методы и модели организации строительства автомобильных дорог.
  • 82. Принципы, методы, системы, функции и структуры управления дорожным строительством.
  • 83. Расчеты эффективности затрат производства, дисконтированная стоимость.
  • 84. Менеджмент качества. Международные стандарты исо серии 9000 по качеству. Эффективность повышения качества.
  • 85. Контроль качества (виды, методы, средства), оценка качества.
  • 87. Конструкции и технология устройства цементобетонных покрытий. Строительство предварительно напряженных покрытий.
  • 86. Техническое нормирование и нормы в дорожном хозяйстве; методы технического нормирования, методика разработки производственных норм.
  • 88. Устройство покрытий из полимербетонов и бетонополимеров.
  • ПЕРЕСЕЧЕНИЯ

    1)Клеверный лист(рис.1) - наиболее широко применяемая схема. Прим.при пересеч. 2-х автомагистралей между собой или при пересеч.автомагистр.с дорогами более низких катег. Преимущества:

    Возможность проетирования правоповоротн.съездов с кривыми бОльшего радиуса при небольш.продол.уклонах,что позволяет повысить скорость движ.; - наличие только одного путепровода.

    2)Неполный клеверный лист примен.: - когда отдельные сворачивающие потоки имеют невысок.интенсивность=>проектирование самостоят.съездов не экономично; - с целью экономии отвода земли вблизи н.п.; - когда дорога имеет к-либо препятствие. Недостат.: наличие точек пересеч.в одном уровне, закругления малых радиусов треб.значительного снижения скоростей.

    а) с 4-мя однопутными съездами(рис.2); б) с 2-мя двупутными съездами, нарполож.в соседн.четвертях(рис.3); в) с 2-мя двупутными, располож.в накрестлежащих четвертях(рис.4).

    1. 2.

    3.
    4.

    5. 6.7.8.

    Распределительное кольцо а) с 5-ю путепровод. (рис.5). Для размещения подъемов и спусков необх.большой радиус кольца, кот.требует большой площади отвода земель. Левоповоротные автомобили совершают большой перепробег. Имеет простую конфигурацию, просты для ориентирования; б) с 2-мя путепроводами. Меньше путепроводов=>меньшая стоимость строительства; в) улучшенный тип кольца. Сложная конфигурация, не экономичная; г) турбинный тип пересечения.Не экономичный

    а) ромбовидный тип. Сожная конструкция(9 путепроводов); б) криволинейный треугольник(16 путепроводов);в) Н-образный тип(9 путепров.).

    У всех большая стоимость строит.

    ПРИМЫКАНИЯ

    ТР, имеющие в основе элем-ты клеверного листа:

    а) по типу «труба»(рис.6). Основная схема примыкания второстепенной дороги к главной, является компактной и не треб. отчуждения большой площади земель. Нет точек пересеч.в одном уровне, простая конфигурация.; б) листовидный тип(рис.7). бОльшая безопасность, смешение различных поворачивающих потоков отсутствуют, простая конфигурация; в) по типу неполного клеверного листа;

    ТР, имеющие в основе элем-ты кольца:

    а) кольцевой тип(рис.8); б) грушевидный; в) грибообразный

    ТР с параллельн.расположением правоповорот.и левоповорот.съездов:

    а) Т-образный тип; б) по типу треугольника

    42. Проектирование съездов для правых и левых поворотов (нормы и техусловия).

    Правоповоротный съезд – движение по нему осуществляется поворотом на право.

    Левоповоротный съезд:

    1)непрямой («клеверный лист»)

    2) полупрямой (сначала поворот направо, потом налево);

    Правоповоротные съезды на развязках выполняют в виде сочетания переходных кривых, а также прямых вставок. Левоповоротные съезды, как правило, по форме приближают к окружности. Радиусы кривых определяются из условия обеспечения расчётной скорости на съездах. Для правоповоротных это 60 км/ч (для III-ей кат.) и 80 км/ч (для I и II кат.), соответствующие минимальные радиусы 125 и 250 м. Для левоповоротных это 40 км/ч (для III-ей кат.) и 50 км/ч (для I и II кат.), соответствующие линии радиусы 50 и 80 м.

    Значения поперечного уклона виражей на съездах в районах с редкими случаями образования гололеда принимают равными:

    Для петель левоповоротных съездов пересечений “клеверный лист” 60 % о;

    Для правоповоротных съездов, рассчитанных на скорости 60-90 км/ч, 30 % о, на скорости 40-50 км/ч - 60 % о;

    Для прямых, полупрямых и кольцевых левоповоротных съездов 30 % о;

    Для других видов съездов, рассчитанных на скорости 40-50 км/ч, 60 % о.

    Поперечный уклон на обочинах съездов, укрепленных каменными материалами, принимают 50(60 % о, при асфальтобетонных обочинах 30-40 % о.

    Ширина проезжей части на однополосных съездах транспортных развязок составляет:

    для петель левоповоротных съездов развязок типа “клеверный лист” 5,5 м;

    Для правоповоротных съездов, рассчитанных на скорости 60-90 км/ч, 5 м, на скорости 40-50 км/ч - 4,5 м;

    Для прямых и полупрямых левоповоротных съездов с радиусом более 100 м - 5,0 м.

    Ширина обочин с внутренней стороны кривых – 1,5 м., с внешней – 3,0 м.

    При устройстве съездов с несколькими полосами движения ширину проезжей части назначают исходя из рекомендаций по определению ширины полос движения на закруглениях автомобильных дорог.

    Для более уверенного управления автомобилем и лучшего зрительного восприятия водителем кромок полосы движения на проезжей части съездов целесообразно устраивать краевые полосы, отличающиеся по цвету от основного покрытия, шириной 0,5 м для скоростей 40(50 км/ч и 0,75 м для более высоких скоростей движения.

    "
  • Вчера я вам показал одно фото этой развязки, а потом все таки сам заинтересовался более подробной информацией. Когда построили, что за название такое! Ведь интересно! Делюсь с вами, надеюсь будет интересно.

    Развязка имени судьи Гарри Преджерсона (Judge Harry Pregerson) - это стековая транспортная развязка возле районов Атенс (Athens) и Уоттс (Watts) в Лос-Анжделесе, Калифорния. Она находится на пересечении следующих шоссе:

    • I-105 (шоссе Glenn M. Anderson Freeway) - Эль Сегандо (El Segundo), Аэропорт Лос-Анджелеса, Норуолк (Norwalk)
    • I-110 (шоссе Harbor) - Сан-Педро (San Pedro), Лос-Анжделес

    Хотя на развязке движение возможно во всех направлениях (в отличие от Hollywood Split, East Los Angeles Interchange), она также состоит из дорог для пассажирского транспорта, железнодорожных путей Лос-Анжделеского метрополитена (Metro Green Line) и транзитной дороги Harbor. Все это образует высокую, впечатляющую конструкцию, которой и является развязка имени судьи Гарри Преджерсона.

    Ее открыли в 1993 году. Развязка была названа в честь судьи Гарри Преджерсона. Он долго занимал пост федерального судьи и председательствовал в судебном процессе по делу строительства автомагистрали I-105.

    Эта развязка считается одной из самых сложных в мире. Она позволяет совершать поворот во всех возможных направлениях на любом из маршрутов следования. Главное не пропустить этот самый, нужный вам, поворот:)



    Кликабельно 1600 рх

    Транспорт, въезжающий на развязку по автомагистралям из разных направлений, может выехать с нее во всех возможных направлениях движения (полная развязка). Однако, на магистралях ограничено движение пассажирского транспорта. Автомобилисты, въезжающие на развязку с восточного или западного направления через магистрали для пассажирского транспорта I-105, могут попасть на магистрали для пассажирского транспорта I-110. Автомобилисты, въезжающие с южной стороны на магистрали для пассажирского транспорта I-110, не имеют прямого доступа на магистрали I-105, и могут просто двигаться дальше в северном направлении. Водители пассажирского транспорта, которые хотят попасть на определенное шоссе, к которому не предусмотрена прямая соединительная магистраль, должны выехать с полосы движения для пассажирского транспорта в определенном месте въезда/выезда перед развязкой и переместиться на главную соединительную магистраль, как обычно делают на всех пассажирских полосах движения в южной Калифорнии.

    На развязке также находится станция метро автострады Harbor, которая является одновременно и железной дорогой Лос-Анжделеского метрополитена (Metro Green Line) и транзитной автобусной полосой Harbor, которая проходит вниз по средним полосам движения I-105 and I-110.

    В статье Лос-Анджелеской газеты «Таймс», эту транспортную развязку (которую позже окрестили Скоростной Автострадой Века) назвали «самой большой, самой высокой, самой дорогостоящей транспортной конструкцией, когда-либо построенной Департаментом по дорожному движению штата Калифорния (California Department of Transportation)». Журналисты также отметили, что «впервые транспортные инженеры штата совместили три модели транспортировки - поезда узкоколейной железной дороги, пассажирский транспорт и легковые автомобили - в один гигантский перекресток».

    Вскоре после открытия, развилка привлекла внимание многих режиссеров. Так в 1994 году появился фильм «Скорость» (Speed). В одной из самых известных сцен кинофильма, автобус должен был перелететь через незаконченную часть постройки по незавершенной приподнятой рампе, которая все еще достраивалась. Строительство пятого уровня эстакады (с I-110 южного направления до I-105 западного направления), которую перепрыгивал автобус, к тому времени был уже закончено, поэтому при монтаже в этой сцене была использована компьютерная графика.


    Вот сам момент съемок

    В 1996 году, Федеральная дорожная администрация США присудила федеральной автостраде 105/ 110 награду, как «чудо инженерной мысли» за превосходное проектирование дороги. Тем самым правительство признало, что проект реализован превосходно: количество пробок на дороге уменьшилось, движение стало более безопасным, а воздух чище.



    Вот еще несколько развязочек:


    модернизация развязки на I-95 and I-695 около Вашингтона

    Вот сам процесс...



    Кликабельно


    Автомобильная развязка , Шанхай, Китай

    The Illinois Department of Transportation (IDOT) hosted a second meeting with the Circle Interchange Project Working Group (PWG)


    Для меня, как для пешехода, все это выглядит ВОТ ТАК:

    Мне вот такие вот дороги нравятся:-)

    Один из лучших хайвеев в Аризоне. идёт через центр Феникса. Сделан ниже уровня земли как бы в яме такой и за счёт этого нет шума, грязи и он не делит город на две части. это не федеральная дорога - хайвей штатного подчинения, однако качество и исполнение на самом высоком уровне.


    источники
    http://beway.ru
    http://www.skyscrapercity.com
    http://grandstroy.blogspot.ru

    В отличие от стандартных пересечений, транспортная развязка обеспечивает свободный поток транспортных средств, позволяя им миновать перекрёстки и светофоры. Но иногда развязки могут быть чрезвычайно сложными и состоять из нескольких уровней. Ниже представлен список, состоящий из десяти самых сложных дорожных развязок в мире.

    South Bay Interchange - массивная транспортная развязка в Бостоне, штат Массачусетс, США. Была построена в конце 90-х годов в рамках проекта “Big Dig”.


    A4 и E70 - сложный дорожно-транспортный узел, находящийся в Милане, Италия.


    Восьмое место в списке десяти самых сложных дорожных развязок в мире занимает транспортная развязка Xinzhuang interchange, находящаяся в Шанхае, Китай.


    На седьмой позиции находится Higashiosaka Loop - дорожно-транспортный узел, расположенный в городе Осаке, Япония.


    Шестую строчку занимает Interchange of I-695 and I-95 - сложная транспортная развязка, находящаяся в округе Балтимор, штат Мэриленд, США.


    Kennedy Interchange - дорожно-транспортный узел, расположенный на северо-восточной окраине города Луисвилл, штат Кентукки, США. Его строительство началось весной 1962 года, и было закончено в 1964.


    Judge Harry Pregerson Interchange - транспортный узел в Лос-Анджелесе, штат Калифорния, США. Был открыт в 1993 году и назван в честь федерального судьи Гарри Прегерсона.


    Tom Moreland Interchange - транспортная развязка, находящаяся на северо-востоке от Атланты, штат Джорджия, США. Была построена между 1983 и 1987 годами и названа в честь Тома Морленда, одного из ведущих специалистов дорожно-строительных работ в США. В настоящее время узел обслуживает около 300 000 автомобилей в день.


    Gravelly Hill Interchange - сложная дорожная развязка в Бирмингеме, Англия, более известная под прозвищем Spaghetti Junction. Была открыта 24 мая 1972 года. Она охватывает 12 га и включает в себя 4 км соединительных дорог.


    Puxi Viaduct - большой, шести уровневый дорожно-транспортный узел, расположенный в историческом центре Шанхая, Китай.

    Безопасность дорожного движения является наиважнейшей характеристикой автомобильной дороги. Германия является одной из передовых стран по развитию автодорожной инфраструктуры, а также норм проектирования. По основному закону скорость движения по автобанам не ограничена, за исключением некоторых участков из-за старого покрытия, ремонта или особенностей прохождения дороги (город). Однако статистика утверждает, что в Германии в 2011 году на дорогах погибло 4 002 человек (1 человек из 22 500 жителей) [статистика ДТП в Германии ], в России же 27 953 человек (1 человек из 5 700 жителей) [статистика ДТП в России ].

    Существенную часть аварий можно избежать, правильно выбирая сочетание геометрических элементов автомобильной дороги и узлов, предупредительных элементов, элементов оснащения автомобильных дорог и т.д.

    Важным условием проектирования дорог является то, что водитель имеет право на ошибку, но последствия этой ошибки должны быть минимальными.

    Соответственно, задачей проектировщика с точки зрения безопасности является:

    1. Предоставить комфортные условия проезда, исключающие ошибку водителя;
    2. В случае возникновения ошибки водителя, минимизировать ее последствия.

    Регулирование поведения водителя на дороге

    Геометрия дороги и окружающая ситуация влияет на скорость транспортного средства. Чем шире проезжая часть, тем выше выбираемая скорость одиночного транспортного средства. Чем прямее дорога и меньше поворотов, тем выше скорость транспортного средства. Более того водитель часто теряет контроль расстояния и скорости. Ему постоянно кажется, что он едет медленно.

    На наших дорогах очень часто можно встретить протяженные прямые участки дорог связанные кривыми малого радиуса. Такая геометрия с одной стороны позволяет водителю развить максимальную для автомобиля скорость, с другой стороны водителю приходится резко тормозить перед поворотом. Дорожный знак, предупреждающий о повороте, может быть не замечен водителем.

    Еще одним отрицательным фактором долгих прямых участков является монотонность, которая приводит к потере внимания и сонливости.

    По опыту эксплуатации дорог в Германии выявлено, что, не смотря на выгодность прямых с точки зрения кратчайшего расстояния между пунктами, они являются и наиболее опасными элементами автомобильных дорог для водителей. Например, самый аварийно опасный автобан в Германии – это А2 Берлин-Ганновер, который состоит из протяженных прямых участков. На основе исследований в Германии принят норматив максимальной длины прямого участка L=20V расчетная. То есть при расчетной скорости 120км/ч максимальная длина прямой составит 2400м.

    Снизить максимальную скорость на участке возможно разнообразным сочетанием геометрии и окружающей ситуации. Плавные последовательные кривые не дают водителю разогнаться. А замкнутое пространство, например, плотная застройка или частые насаждения также передают водителю ощущение опасности, и на больших скоростях в таких условиях водитель чувствует себя не комфортно.

    Соответствие геометрических элементов ожиданиям водителя

    Геометрические элементы дорог и транспортных развязок должны соответствовать ожиданиям водителя. Ожидания водителя в свою очередь формируются привычками и предыдущими элементами. Если предыдущие элементы позволили развить высокую скорость, то устраивать вслед за такими элементами резкий поворот будет очень опасно. Для того чтобы плавно снизить скорость водителя необходима последовательность элементов с постепенным изменением параметров. Например, не безопасно после затяжного прямого участка вставлять радиус 200 метров. Однако если вставить между прямой и малым радиусом несколько последовательных кривых – с радиусом 2000, 1200, 800, 400 метров в порядке уменьшения – то водитель сам постепенно снизит скорость и будет безопасно подготовлен к крутому повороту.

    Рассмотрим пример примыкания в разных уровнях по типу Труба. В ВСН 103-74 говорится, что в зависимости от местных условий и транспортной ситуации может применяться зеркальная схема. В учебнике «Пересечения и примыкания автомобильных дорог» утверждается, что одним из основных определяющих факторов для выбора схемы примыкания типа Труба являются интенсивности левоповоротных потоков.

    Но в данном случае упущен тот факт, что съезжающий по левоповоротнему съезду на примыкающую дорогу водитель уже подготовлен к малому радиусу наличием переходно-скоростной полосы, на которой по привычке снижается скорость. А въезжающий по левоповоротнему съезду с примыкающей дороги водитель как находился на главной дороге, так и остался на ней, ничто кроме знаков не указывает ему о приближении малого радиуса. Именно основываясь на этом доводе, в Германии рекомендуют устраивать примыкание по типу Труба со съездами с левой стороны от путепровода, так как только в этом случае можно использовать максимально возможные радиусы для данного съезда с обеспечением наиболее высокого уровня безопасности. Кроме того необходимо самой геометрией примыкания указывать водителю наличие опасности. На следующем рисунке указана типовая схема развязки по типу Труба в Германии.

    Несмотря на все эти условия, в последних немецких нормах (2008г) рекомендуют по возможности рассматривать варианты устройства более безопасного типа примыкания — Треугольник.

    Конфликтные точки

    Конфликтные точки – это места пересечения, схождения и расхождения транспортных потоков. Наиболее опасными конфликтными точками для транспортных развязок являются места параллельного пересечения транспортных потоков. Они связаны с перестроением двух параллельных потоков. При этом их траектории пересекаются.

    При высоких интенсивностях эти конфликтные точки влияют не только на безопасность движения, но, также могут привести к образованию заторов (см рис. ниже). Водителю нужно перестраиваться и в тоже время контролировать ситуацию в соседней полосе, интервалы до транспортных средств в обеих полосах и скорости транспортных средств в обеих полосах, а также постоянно проверять слепую зону. Особой проблемой в этом случае являются медленно разгоняющиеся большегрузные автопоезда, которым просто не позволяют перестроиться юркие легковые автомобили, и которые тормозят весь транспортный поток.

    Предусмотреть данную ситуацию на стадии проекта можно экспертным путем, зная необходимые интенсивности движения. В Германии такую оценку производят с помощью специальной методики (будет освещена в последующих статьях).

    Самым дешевым улучшением может быть удлинение области перестроения потоков за счет вытягивания левоповоротнего съезда вдоль основной дороги. Более дорогим решением является устройство прямого или полупрямого левоповоротнего съезда, который позволит совсем избежать области пересечения потоков.

    Уменьшению количества опасных зон на транспортных развязках также служат различные усовершенствования форм. Например, наиболее удобные условия движения по главной дороге и в области переплетения потоков создаются, когда на основной дороге съезд находится перед въездом. Для этого предусматривается отделение съезжающих и въезжающих потоков от основной дороги отдельным проездом.

    В результате вместо двух съездов и двух въездов на основном ходу находится только один съезд, вслед за которым расположен один въезд. Таким образом, область пересечения потоков переносится с основной дороги на съезд и уменьшается общее количество конфликтных точек для основного транспортного потока. Пересечение потоков на съездах происходит на меньших скоростях. Это в свою очередь увеличивает пропускную способность транспортной развязки и безопасность для водителей.