Преобразование вращательного движения в прямолинейное. Механизмы прямолинейного движения, схемы кулачковых механизмов Работа типовых механизмов прямолинейного движения


Короткий путь http://bibt.ru <<Предыдущая страница Оглавление книги Следующая страница>>

Механизмы для преобразования вращательного движения в прямолинейное или возвратно-поступательное.

Для преобразования вращательного движения в прямолинейное или возвратно-поступательное в станках применяют кривошипные, кулисные, кулачковые, гидравлические и пневматические механизмы.

Кривошипные механизмы состоят из кривошипного диска с цапфой и шарнирно соединенного с ним шатуна. Ход ползуна, приводимого шатуном, изменяют путем перестановки цапфы кривошипа на диске в радиальном направлении.

Рис. 125.

Кулисный механизм состоит из кривошипного диска 1, кулисы 2 (рис. 125), качающейся вокруг оси 3. Другой конец кулисы связан с ползушкой 4. При вращении кривошипного диска палец 5, входящий в кулисный камень 6, заставляет кулису качаться вокруг оси 3.

Кулисный камень скользит при этом в прорези кулисы. При изменении радиуса R кривошипа путем перестановки его пальца в радиальной прорези диска изменяется ход ползушки 4.

Кулачковые механизмы разделяются на цилиндрические и дисковые. Первые состоят из цилиндра с копирным пазом или выступом, по которому при вращении цилиндра скользит палец с роликом, связанный с ползуном. Вторые представляют собой профилированные кулачки, в периферическую поверхность которых упираются пальцы с роликами. Эти пальцы связаны с ползунами, которым придают возвратно-поступательное движение при вращении кулачков.

В гидравлических приводах перемещение поршня, передаваемое ползуну, осуществляется при нагнетании масла шестеренчатым или лопастным насосом поочередно в полости цилиндра, расположенные по обе стороны поршня.

Изменение длины хода ползуна производится перестановкой упоров, воздействующих на рычаг. Последний изменяет положение золотника, который перекрывает и открывает поочередно окна каналов ввода и выпуска масла из цилиндра.

Рассмотрим передаточные механизмы, с помощью которых можно преобразовать вращательное движение в поступательное или колебательное (и наоборот).

Такие механизмы характеризуются передаточной функцией – это первая производная от функции перемещения 1 ведомого звена по углу поворота или линейному перемещению ведущего звена.

Рычажные механизмы . Примером рычажного механизма является шарнирно-рычажный механизм (см. рис. 1.2).

На рис. 1.11 приведена кинематическая схема кривошипно-ползунного механизма, в состав которого входит кривошип 1, шатун 2 и ползун 3.

Этот механизм служит для преобразования вращательного движения кривошипа 1 в возвратно-поступательное движение ползуна 3 (и наоборот).

Рис. 1.11. Кривошипно-ползунный механизм

Передаточной функцией является зависимость скорости перемещения ползуна от угловой скорости кривошипа: v 3 =f( 1) (и наоборот).

Передача винт-гайка . На рис. 1.12 приведена передача винт-гайка, которая предназначена для преобразования вращательного движения одного звена в поступательное движение другого.

Передаточной функцией является зависимость скорости осевого перемещения гайки от угловой скорости винта: v 2 =f( 1).

Рис. 1.12. Передача винт-гайка: 1 – винт, 2 – гайка

Кулачковый механизм . На рис. 1.13 приведен кулачковый механизм (в состав которого входят кулачок 1 и толкатель 2) и его кинематическая схема.

Рис. 1.13. Кулачковый механизм: 1 – кулачок, 2 – толкатель

Передаточной функцией является зависимость скорости осевого перемещения толкателя от угловой скорости кулачка: v 2 =f( 1).

В машиностроении широко распространены кулачковые механизмы, преобразующие вращательное движение в возвратно-поступательное или возвратно-качательное: например, для выполнения различных операций в системах управления рабочим циклом технологических машин, станков, двигателей и т.д. 1 .

Примеры по темам модуля 1

Пример 1 .

Схема машины дана на рис. 1.1. Частота вращения вала двигателя = 3000 об/мин. Угловая скорость вращения входного вала исполнительного механизма =2с -1 . Подобрать червячную передачу, учитывая, что число витков (заходов) червяка равно одному либо двум. Определитьи .

Решение.

1.Определим угловую скорость вращения вала двигателя (см. формулу (1.4)):

2. Найдем передаточное отношение передачи вращения (см. формулу (1.1)):

.

3. Подберем червячную передачу.

Вариант 1. Если число витков червяка
, то число зубьев червячного колеса из формулы (1.11)

.

Вариант 2. Если число витков червяка =2, то число зубьев червячного колеса

Пример 2.

Зубчатая передача должна уменьшить частоту вращения вала 4 (см. рис. 1.4) в 3 раза. Определить число зубьев колеса , если число зубьев шестерни = 25.

Решение.

Число зубьев колеса из формулы (1.6)

.

Пример 3.

Рис. 1.14. К примеру 3

Определить передаточное отношение механизма, приве­денного на рис. 1.14, при заданных числах зубьев колес: =22, =77, =25, =50. Найти угловую скорость и частоту вращения ведущего вала 1, если вал 3 вращается с частотой =300 об/мин.

Решение.

1.Определим передаточное отношение зубчатой передачи, установленной на валах 1 и 2

2. Определим передаточное отношение зубчатой передачи, установленной на валах 2 и 3

3. Передаточное отношение механизма

4. Найдем частоту вращения вала 1:

5. Рассчитаем угловую скорость вращения вала 1:

Ответ: передаточное отношение механизма равно 7, частота вращения вала 1 составляет 2100 об/мин, угловая скорость вращения – 219,8 с -1 .

Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также передачи гибкой связью (на­пример, ременные, канатные, ленточные и цепные). С помощью этих механизмов осуществляется передача вращательного движения от источника движения (ведущего вала) к приемнику дви­жения (ведомому валу).

Передачи характеризуются передаточным отношением или передаточным числом.

Передаточным отношеньем i называется отношение уг­ловой скорости ведущего звена к угловой скорости ведомого зве­на. Передаточное отношение может быть больше, меньше или равно единице.

Передаточным числом и двух сопряженных звеньев назы­вается отношение большей углевой скорости к меньшей. Пере­даточное число передачи всегда больше или равно единице.

В целях унификации обозначений передаточные отношения и передаточные числа всех передач мы будем обозначать буквой «и», в некоторых случаях с двойным индексом, соответствую­щим индексам звеньев передачи: .

Заметим, что индекс 1 приписывают параметрам ведущего звена передачи, а индекс 2 - ведомого.

Передача, у которой угловая скорость ведомого звена меньше угловой скорости ведущего, называется понижающей в противном случае передача называется повышающей.

В технике наибольшее распространение получили: 1) зубча­тые, 2) ременные и 3) цепные передачи.

1. Общие сведения о простейших зубчатых передачах их основных видах, а также конструктивных элементах зубчатых ко­лес, реек и червяков известны из курса черчения. Рассмотрим зубчатую передачу, схематически изображенную на рис. 2.17.

В месте соприкосновения зубчатых колес I и II скорости то­чек первого и второго колеса одинаковы. Обозначив модуль этой скорости v, получим . Следовательно, можно записать так: .

Из курса черчения известно, что диаметр делительной окружности зубчатого колеса равен произведению его модуля на число зубьев: d = mz. Тогда для пары зубчатых колес:


Рис.2.17


2. Рассмотрим ременную пе­редачу, схематически изображен­ную на рис. 10.6. При отсутствии

рис.2.18

проскальзывания ремня по шки­вам ,следовательно, для ременной пе­редачи .

Приводы для осуществления прямолинейного движения рабочих органов станков могут быть разбиты на механические, преобразующие вращательное движение в прямолинейное (рис 20, а-е), поршневые (рис 20, ж, з), магнитострикционные и термодинамические.

Механические приводы разделяются на реверсируемые и циклического действия. В реверсируемых приводах направление движения рабочего органа меняется при изменении направления вращения звена, преобразующего вращательное движение в прямолинейное, с помощью реверсивного привода вращательного движения.

Реверсируемые приводы состоят из привода вращательного движения I (рис 20, а) с механизмом реверса 2 и звена, преобразующего вращательное движение в прямолинейное перемещение рабочего органа 4. Для преобразования вращательного движения в прямолинейное могут быть использованы: винт 3 (рис 20, а), червяк 2 и червячная рейка (рис 20б), прямозубое, косозубое или шевронное реечное колесо 2 сцепляющееся с рейкой 1 (рис 20в), червяк или косозубое колесо 2, с осью расположенной под углом к направлению движения сцепляющееся с рейкой 1 (рис 20г) и гибкая передача 2 (рис 20д).

Рис. 20 Механизмы для прямолинейного движения

В зависимости от характера движения рабочего органа привод вращательного движения должен обеспечивать изменение скорости хода в соответствии с заданным режимом работы, изменение направления движения рабочего органа, получение быстрого хода в обоих или в одном направлении. В зависимости от требований, обусловленных характером движения рабочего органа, привод вращательного движения имеет более или менее сложную структуру механизмов для изменения скорости рабочих ходов, механизмов реверса и быстрых ходов, а также соответствующую систему механизмов переключения кинематических цепей и управления. Все это приводит к более или менее значительному усложнению конструкции приводов прямолинейного движения.

Важным достоинством реверсируемых приводов является возможность настройки длины хода и последовательности включения быстрых и рабочих ходов в соответствии с требованиями конкретной технологической операции, чем обусловливается применение этих приводов на универсальных и специализированных станках.

Следует заметить, что реверсируемые приводы пригодны при любой максимальной длине хода рабочего органа.

Плавность хода, точность перемещения, жесткость и к. п. д. реверсируемого привода в значительной мере зависят от формы передачи, применяемой для преобразования вращательного движения в прямолинейное.



На плавности хода и точности сказываются кинематическая точность и зазоры в передаче, преобразующей вращательное движение в прямолинейное.

Рассмотрим различные передачи, используемые для преобразования вращательного движения в прямолинейное в реверсивных приводах.

Передача винт-гайка (рис 20, а) может быть выполнена с особо высокой точностью. По нормали станкостроения для винтов нулевого класса допускаемые отклонения шага в пределах одного шага равны ±2 мк, а наибольшая накопленная ошибка шага на длине 300 мм равна 5 мк. Высокая точность изготовления обеспечивает при соответствующей конструкции привода высокую точность перемещений.

Так как передача винт-гайка позволяет получить низкую скорость прямолинейного движения при сравнительно большом числе оборотов винта, кинематические цепи приводов подачи и установочных перемещений при использовании этой передачи состоят из небольшого числа понижающих передач, что приводит к упрощению кинематики и конструкции привода и к уменьшению его приведенного момента инерции по сравнению с другими механическими приводами.

Так как жесткость передачи винт-гайка определяется деформациями растяжения или сжатия, а также (в меньшей степени) деформациями кручения, то при большой длине винта и малом диаметре жесткость передачи может оказаться недостаточной, что отрицательно сказывается на плавности и точности перемещений.

Существенным недостатком описываемой передачи является низкий к. п. д. Этот недостаток может быть устранен при использовании передачи винт-гайка с циркулирующими шариками в гайке. В этом случае трение скольжения заменяется трением качения, и к. п. д. возрастает до 0,9-0,98. Передачи этого типа находят все более широкое применение в станках и в первую очередь в различного рода следящих приводах.



Передачи винт-гайка широко используются в кинематических профилирующих цепях, приводах подачи и установочных перемещений, где при малой мощности приводов к. п. д. не имеет существенного значения, а положительные особенности данной передачи играют существенную роль.

В тех случаях, когда передача винт-гайка не может быть выполнена достаточно жесткой, применяют червячно-реечную передачу (рис 20б), рейка которой представляет собой как бы часть гайки большой длины. Так как длинный винт сравнительно небольшого диаметра заменен коротким червяком, то жесткость передачи оказывается значительно выше. Однако точность червячно-реечной передачи ниже передачи винт-гайка, так как червячная рейка может быть изготовлена только составной из отдельных кусков и не может быть выполнена с такой же высокой точностью как винт. К. п. д. этой передачи также ниже, так как диаметр червяка в силу конструктивных особенностей его размещения значительно больше диаметра винта, что приводит к снижению угла подъема и, следовательно, к. п. д. передачи.

Червячно-реечные передачи используются в тех случаях, когда для обеспечения плавности хода требуется высокая жесткость привода, а к точности перемещений предъявляются не столь жесткие требования: в механизмах подачи продольнофрезерных, расточных, карусельных и некоторых других видов станков.

Зубчато-реечная передача (рис 20, в) вследствие большей величины ошибок в шаге и зазоров по сравнению с передачей винт-гайка дает меньшую плавность хода и точность перемещения. Передача обладает высоким к. п. д. и сравнительно высокой жесткостью, применяется в приводах главного движения строгальных станков и в приводах подач токарных, револьверных, сверлильных, расточных и других станков.

В приводах главного движения строгальных станков реечная шестерня имеет большой диаметр, благодаря чему увеличивается коэффициент продолжительности зацепления и плавность хода. С этой же целью в приводах строгальных станков применяются косозубые и шевронные шестерни. Благодаря большому диаметру реечной шестерни в приводы приходится вводить большое число понижающих передач, что приводит к увеличению приведенного момента инерции привода.

В приводах подач реечная шестерня выполняется с малым числом зубцов 12-13. Для устранения подрезания зубьев применяют коррекцию.

В приводах продольнострогальных станков значительное распространение нашли реечные передачи, представленные на рис 20, г. Они выполняются с многозаходным червяком (косозубой шестерней с небольшим числом зубьев и большим углом наклона). Такие передачи имеют сравнительно высокий к. п. д., обеспечивают плавность хода и уменьшение числа понижающих передач в приводе.

В отдельных моделях станков для преобразования вращательного движения в прямолинейное применяются гибкие связи (рис 20д). К диску 1 прикреплена гибкая связь 2. В качестве гибкой связи может быть использована стальная лента, проволока, трос. С другой стороны связь прикреплена к поводку 3 рабочего органа 4. При повороте диска 1 рабочий орган перемещается прямолинейно. Гибкие связи в форме стальной ленты и проволоки обеспечивают при небольших нагрузках высокую точность перемещения и используются в механизмах обкатки различных зубообрабатывающих станков: зубошлифовальных, для строжки конических зубчатых колес и др.

В приводах циклического действия в отличие от реверсивных направление движения рабочего органа изменяется с помощью самого звена, преобразующего вращательное движение в прямолинейное, при этом направление вращения последнего звена остается неизменным.

К числу приводов циклического действия относятся кривошипные, кривошипно-кулисные и кулачковые" механизмы.

Кривошипные и кривошипно-кулисные приводы могут выполнять только некоторые из функций, которые возлагаются на привод прямолинейного движения.

Так, кривошипный привод выполняет только функции реверсивного механизма при изменении направления движения. Скорости прямого и обратного хода одинаковы и переменны по длине хода. Длина хода изменяется путем изменения радиуса кривошипа. При большой длине хода механизм становятся громоздким. Данный механизм находит ограниченное применение при малой длине хода 100-300 мм в приводах главного движения зубодолбежных и зубострогальных станков, где увеличение скорости обратного хода не дает заметного повышения производительности, в приводах подачи пазо- и шпоночнофрезерных станков. Кривошипно-кулисный механизм позволяет получить повышенную скорость обратного хода, которая является функцией рабочего хода и сравнительно незначительно превышает ее. Скорость по длине хода переменная. Механизмы этого типа с качающейся и вращающейся кулисой применяются в поперечнострогальных и долбежных станках при длине хода до 900-1000 мм.

Кулачковые механизмы (рис 20, ё) выполняют все функции привода прямолинейного движения за счет придания соответствующего профиля кулачку. Цилиндрический кулачок 1 с криволинейным пазом, в который входит ролик, прикрепленный к подвижному рабочему органу 2 на участке а имеет крутой подъем, соответствующий быстрому ходу вперед, на участке б - пологий подъем, соответствующий рабочему ходу, и на участке в - крутой спуск, соответствующий быстрому ходу назад. Таким образом, с помощью кулачкового механизма может быть легко осуществлена требующаяся последовательность движения рабочего органа с заданной скоростью и длиной хода, благодаря чему кулачковые механизмы находят широкое применение в станках-автоматах. Недостатком кулачковых механизмов является необходимость изготовления специальных кулачков применительно к конкретной технологической операции.

Поршневые приводы прямолинейного движения. При поршневых приводах (рис 20ж) рабочий орган 2 в большинстве случаев связывается непосредственно с подвижным поршнем 1 или цилиндром поршневого привода, что позволяет значительно упростить всю кинематику и конструкцию соответствующего узла станка. Лишь в отдельных случаях при осуществлении особо точных перемещениях и небольшой длине ходов рабочих органов вводятся промежуточные понижающие передачи от поршневого привода к рабочему органу (рис 20з).

Вследствие простоты конструкции поршневые приводы различного типа находят значительное распространение в станках.

Кривошипно-шатунные механизмы служат для преобразования вращательного движения в возвратно-поступательное и наоборот. Основными деталями кривошипно-шатунного механизма являются: кривошипный вал, шатун и ползун, связанные между собой шарнирно (а). Длину хода ползуна можно получить любую, зависит она от длины кривошипа (радиуса). Если длину кривошипа мы обозначим через букву А, а ход ползуна через Б, то можем написать простую формулу: 2А = Б, или А = Б/2. По этой формуле легко найти и длину хода ползуна и длину кривошипа. Например: ход ползуна Б = 50 мм, требуется найти длину кривошипа А. Подставляя в формулу числовую величину, получим: А = 50/2 = 25 мм, то есть длина кривошипа равна 25 мм.

а - принцип действия кривошипно-шатунного механизма,
б - одно-коленчатый вал, в - много-коленчатый вал,
г - механизм с эксцентриком

В кривошипно-шатунном механизме вместо кривошипного вала часто применяют коленчатый вал. От этого сущность действия механизма не меняется. Коленчатый вал может быть как с одним коленом, так и с несколькими (б, в).

Видоизменением кривошипно-шатунного механизма может быть также эксцентриковый механизм (г). У эксцентрикового механизма нет ни кривошипа, ни колен. Вместо них на вал насажен диск. Насажен же он не по центру, а смещено, то есть эксцентрично, отсюда и название этого механизма - эксцентриковый.

В некоторых кривошипно-шатунных механизмах приходится менять и длину хода ползуна. У кривошипного вала это делается обычно так. Вместо цельного выгнутого кривошипа на конец вала насаживается диск (планшайба). Шип (поводок, на что надевается шатун) вставляется в прорез, сделанный по радиусу планшайбы. Перемещая шип по прорезу, то есть удаляя его от центра или приближая к нему, мы меняем размер хода ползуна.

Ход ползуна в кривошипно-шатунных механизмах совершается неравномерно. В местах "мертвого хода" он самый медленный.

Кривошипно-шатунные - механизмы применяются в двигателях, прессах, насосах, во многих сельскохозяйственных и других машинах.