Методы определения лекарственных веществ. Методы исследования лекарственных веществ

Вступление

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

1.2 Ошибки, возможные при проведении фармацевтического анализа

1.3 Общие принципы испытаний подлинности лекарственных веществ

1.4 Источники и причины недоброкачественности лекарственных веществ

1.5 Общие требования к испытаниям на чистоту

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10-810-9% анализируемого вещества, полярографические и флуориметрические 10-610-9%; чувствительность спектрофотометрических методов Ю-310-6%, потенциометрических 10-2%.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра количество милли

Вступление

1.2 Ошибки, возможные при проведении фармацевтического анализа

1.3 Общие принципы испытаний подлинности лекарственных веществ

1.4 Источники и причины недоброкачественности лекарственных веществ

1.5 Общие требования к испытаниям на чистоту

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 -10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 -10 -9 %; чувствительность спектрофотометрических методов Ю -3 -10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Лекция №2
по курсу «Анализ и контроль
качества лекарственных средств»
1

Краткий план лекции

1. Классификация ЛВ. Общая характеристика
фармакопейного анализа ЛВ. Реактивы, используемые в
фармакопейном анализе.
2. Физико-химические свойства лекарственных веществ
(агрегатное состояние, внешний вид, окраска, кристалличность,
полиморфизм и методы его исследования. Растворимость.
Кислотно-основные свойства лекарственных веществ).
3. Физические константы лекарственных средств и методы
их определения.
4. Методы идентификации лекарственных средств
5. Примеси в лекарственных средствах, классификация,
методы идентификации и анализа. Понятие о стрессовых
испытаниях
6. Методы количественного анализа лекарственных
средств
2

Классификация ЛВ

1. Неорганические вещества (производные s-, p- и dэлементов).
2. Органические вещества
2.1. Алифатические соединения (алканы,
галогеналканы, спирты, альдегиды, простые эфиры,
углеводы, аминокислоты, карбоновые кислоты)
2.2. Ароматические соединения (фенолы,
ароматические карбоновые кислоты, ароматические
аминокислоты, фенилалкиламины,
сульфаниламиды);
2.3. Стероидные соединения, простагландины
3

Классификация ЛВ (продолжение)

2.3. Гетероциклические соединения
2.3.1. Соединения, содержащие один гетероатом
(производные фурана, бензофурана, пиридина,
хинолина, изохинолина и др.);
2.3.2. Соединения содержащие два и более
одинаковых гетероатома (производные пиразола,
имидазола, бензимидазола, пурина, птеридина и
др.).
2.3.3. Соединения содержащие два и более разных
гетероатомов (производные тиазола, бензотиазола,
оксазолидины и др.).
2.4. Элементорганические вещества.
3. Радиофармацевтические препараты.
4. Биотехнологические (высокомолекулярные)
лекарственные вещества
4

Фармацевтический анализ (анализ ЛВ и ЛС)

Фармацевтический анализ – это раздел науки о
химической характеристике и измерении БАВ на всех
этапах производства – от контроля сырья до оценки
качества полученного ЛВ, изучения его стабильности
(установления сроков годности) и стандартизации ЛФ и
ЛС.
Особенности:
1. Проводится анализ совершенно различных по
природе, структуре и свойствам веществ
2. Измеряемые концентрации (содержания) находятся в
диапазоне от 10-9 (1 ppb) до 100%.
3. Анализируются не только индивидуальные ЛВ, но и их
5
смеси.

Фармацевтический анализ (классификации)

В зависимости от поставленных задач:
1. Фармакопейный анализ
2. Постадийный контроль производства ЛВ и ЛС
3. Анализ индивидуальных ЛС
4. Аптечный экспресс-анализ
5. Биофармацевтический анализ
В зависимости от результата:
1. Качественный
2. Количественный
3. Полуколичественный (предельные испытания)
6

Критерии фармацевтического анализа

1. Избирательность (специфичность, селективность) –
способность однозначно оценивать определяемый
компонент выбранным методом независимо от других
присутствующих веществ (примесей, продуктов распада и
др.) в испытуемом образце в пределах заданного
диапазона применения.
2. Чувствительность
2.1. Предел обнаружения
2.2. Предел определения
3. Правильность – отражение разницы между истинным
содержанием определяемого компонента и
экспериментальным результатом анализа.
4. Воспроизводимость (прецизионность) –
характеристика «рассеивания» результатов возле
среднего значения определяемой величины.
5. Робастность – характеристика устойчивость методики
во времени.
Эти критерии устанавливаются в процессе валидации 7
методов (методик)

Фармакопейный анализ ЛВ (общая структура)

агрегатное состояние,
внешний вид,
окраска, кристалличность,
полиморфизм
Подлинность
Первая идентификация
(специфичный метод)
Вторая идентификация
(потверждение)
Определение
физических
констант,
ф/х свойств
Фармакопейный
анализ ЛВ
(общая структура)
температура плавления, температура
затвердевания, температура каплепадения,
температурные пределы перегонки
температура кипения,
плотность и вязкость жидкостей, удельное
вращение и показатель преломления
растворимость, pH
Определение
примесей
Количественное
определение
Показатели микробной чистоты,
стерильность, апирогенность, отсутствие вирусных тел
8

Химическое название

Используется номенклатура IUPAC
(International Union Pure Applied Chemistry) – Международный союз
чистой и прикладной химии)
(гораздо реже – тривиальные названия)
1) определяют тип номенклатуры (заместительная, радикальнофункциональная);
2) определяют тип характеристической группы, которую следует принять
за главную;
3) определяют родоначальную структуру (главную цепь, старшую
циклическую систему);
4) дают название исходной структуре и основным группам;
5) дают название префиксам;
6) проводят нумерацию;
7) объединяют частичные названия в общее полное название,
придерживаясь алфавитного порядка для всех определяемых префиксов.
Помимо названия указывают структурную химическую формулу
и брутто-формулу.
9

10. Пример оформления

2-(нафтален-1-илметил)-4,5-дигидро-1Н-имидазола
гидрохлорид
10

11. Пример построения химического названия органического ЛВ

Выбор нумерации: от атома азота,
ближайшего к старшему заместителю
(С=О-группе).
Установление родоначальной
структуры: 1,4-бензодиазепин;
Название с учетом заместителей: 2,3дигидро-2Н-1,4-бензодиазепин-2-он;
Перечисление заместителей: по
алфавиту – 7-Cl-1-Me-5-Ph
Итого:
7-хлор-1-метил-5-фенил-2,3дигидро-2Н-1,4-бензодиазепин-2-он
H3C
O
N
Cl
N
11

12. Пример построения химического названия органического ЛВ (2)

2-метил-3-гидрокси4,5-ди
(гидроксиметил)пиридин
HO
OH
4
3
5
2
HO
6
N
1
12

13. Описание ЛВ

1. Агрегатное состояние (жидкость, газ, твердое
вещество, кристалличность), цвет, запах, особые
свойства (гигроскопичность, легкая окисляемость на
воздухе и др.), размер частиц (для тв. веществ).
2. Полиморфизм – явление, характерное для
твердых веществ – способность вещества в твердом
состоянии существовать в различных
кристаллических формах при одном и том же
химическом составе.
При описании сольватов (гидратов) используется
термин «псевдополиморфизм» (изменчивость
состава сольвата или гидрата).
13

14. Описание ЛВ - полиморфизм

Полиморфные формы проявляют
одинаковые химические свойства
в растворах и расплавах, но в
твердом состоянии их физические
(плотность, Т плавл, сжимаемость)
и физико-химические свойства
(растворимость и как следствие
биодоступность) могут
существенно различаться.
Та из полиморфных форм,
которая имеет меньшее значение
свободной энтальпии, является
наиболее термодинамически
стабильной, а остальные формы
могут находиться в т.н.
«метастабильном» состоянии. 14

15. Полиморфизм (примеры)

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен);
е) графен; ж) однослойная нанотрубка
15

16. Полиморфизм (примеры)

Нимесулид (на формуле показаны торсионные вращения и
упаковка, соответствующая полиморфной форме I)
16

17. Полиморфизм (примеры)

Нимесулид (на формуле показаны суммарные торсионные
вращения и упаковка, соответствующая полиморфной форме II)
17

18. Полиморфизм (примеры)

Данные
рентгеновской
дифракции для
форм I и II
нимесулида
18

19. Полиморфизм (примеры)

Дифференциальная сканирующая калориметрия
(DSC) полиморфных форм нимесулида
19

20. Полиморфизм и биодоступность

Кинетика растворения двух полиморфных
форм нимесулида (37С, рН 7,5)
20

21. Методы исследования полиморфных форм

1. Рентгеновская дифракция (порошок и
кристаллы)
2. Дифференциальная сканирующая
калориметрия, микрокалориметрия
3. Термогравиметрия
4. Анализ поглощения влаги
5. ИК-Фурье-спектроскопия
6. Рамановская спектроскопия
7. Изучение растворимости (кинетики
растворения)
21

22. Размер частиц (порошки, пеллеты)

Для определения размера
частиц использую наборы
сит с квадратными
отверстиями,
изготовленные из инертных
материалов. Степень
измельчения указывается с
использованием номера
сита (размер стороны
отверстия в мкм).
Современные методы – методы
лазерного сканирования
22

23. Растворимость

Данные о растворимости вещества означают
приблизительную растворимость при температуре
20°С, если нет других указаний. Выражение
«растворим в стольких-то частях» следует понимать
как указание на число миллилитров растворителя
(представленное указанным числом частей), в
которых растворим 1 г твердого вещества.
Иногда для обозначения растворимости вещества
используются описательные термины (легко, плохо,
трудно и т.д.).
Классическое описание растворимости (справочники)
– 1 г вещества растворяется в Х г растворителя при
температуре Т.
23

24. Растворимость

24

25. Кислотно-основные свойства

Не приводятся в нормативных документах по
контролю качества ЛВ, но имеют решающее
значение при проведении испытаний,
растворимости в водных средах, выборе
методик и методов анализа, а также
всасыванию, распределению,
биодоступности ЛВ.
По кислотно-основным свойствам все
вещества делятся на неионогенные (не
кислота/не основание) и ионогенные –
кислоты (проявляющие в основном
кислотные свойства), основания, амфолиты.
25

26. Методы определения физических констант

1. Гравиметрия
2. Рефрактометрия
3. Поляриметрия
4. Вискозиметрия (капиллярная,
ротационная)
5. Термометрия
26

27. Относительная плотность (d20)

Относительная плотность d представляет собой отношение
массы определенного объема вещества к массе равного его
объема воды при температуре 20оС.
Относительную плотность d определяют с помощью
пикнометра, плотномера, гигростатических весов или ареометра
с точностью до десятичных знаков, обозначенных в частной
статье. Атмосферное давление при взвешивании не учитывают,
так как связанная с ним ошибка не превышает единицы в
третьем десятичном знаке.
Кроме того, обычно используют два других определения.
Относительная плотность вещества представляет собой
отношение массы определенного объема вещества при
температуре 20оС к массе равному ему объема воды при
температуре 4оС.
Плотность ρ20 - это отношение массы вещества к его объему
при температуре 20оС. Плотность выражают в килограммах на
кубический метр (1 кг/м3 = 10 –3 г/см3). Чаще всего измерение
плотности выражается в граммах на кубический сантиметр
27
(г/см3).

28. Относительная плотность

28

29.

29

30. Показатель преломления

30

31. Рефрактометры

31

32.

32

33. Оптическое вращение

33

34. Оптическое вращение

34

35.

35

36. Поляриметрия (оборудование)

36

37. Вязкость

Вязкость (внутреннее трение) – свойство текучих тел оказывать
сопротивление передвижению одной их части относительно
другой.
Текучие тела могут иметь ньютоновский тип течения.
Ньютоновскими жидкостями называют системы, вязкость которых
не зависит от напряжения сдвига и является постоянной
величиной в соответствии с законом Ньютона.
Для ньютоновских жидкостей различают динамическую,
кинематическую, относительную, удельную, приведенную и
характеристическую вязкости. Для неньютоновских жидкостей
характерна, главным образом, структурная вязкость.
Динамическая вязкость или коэффициент вязкости η – это
тангенциальная сила, приходящаяся на единицу поверхности,
которая также называется напряжением сдвига t , выраженная в
паскалях (Па), которую необходимо приложить для того, чтобы
переместить слой жидкости площадью 1 м2 со скоростью (v) 1
метр в секунду (м.с-1), находящийся на расстоянии (х) 1 метр
относительно другого слоя, параллельно площади скольжения.
37

38. Вязкость (капиллярный метод)

Методика. Испытуемую жидкость,
имеющую температуру 20оС, если в
частной статье не обозначена другая
температура, заливают в вискозиметр
через трубку (L) в таком количестве, чтобы
заполнить расширение (А), но при этом
уровень жидкости в расширении (В) должен
остаться ниже выхода к вентиляционной
трубке (М). Вискозиметр в вертикальном
положении погружают в водяную баню при
температуре (20+/-0,1)оС, если в частной
статье не указана другая температура,
удерживая его в этом положении не менее
30 минут для установления температурного
равновесия. Трубку (М) закрывают и
повышают уровень жидкости в трубке (N)
таким образом, чтобы она находилась
примерно на 8 мм выше метки (Е).
Удерживают жидкость на этом уровне,
закрыв трубку (N) и открыв трубку (М).
Затем открывают трубку (N) и измеряют
время, за которое уровень жидкости
снизится от метки (Е) до метки (F),
секундомером с точностью до одной пятой
секунды.
38

39. Температурные пределы перегонки

39

40. Температура плавления

1. Капиллярный метод определения температуры
плавления. Температура плавления, определенная
капиллярным методом, представляет собой температуру, при
которой последняя твердая частичка уплотненного столбика
вещества в капиллярной трубке переходит в жидкую фазу.
2. Открытый капиллярный метод - применяют для
веществ, имеющих аморфную структуру, не растирающихся в
порошок и плавящихся ниже температуры кипения воды,
таких как жиры, воск, парафин, вазелин, смолы.
3. Метод мгновенного плавления - применяют для твердых
веществ, легко превращаемых в порошок.
4. Температура каплепадения - температура, при которой в
условиях, приведенных ниже, первая капля расплавленного
испытуемого вещества падает из чашечки (жиры, воски,
масла).
5. Температура затвердевания – максимальная температура,
при которой происходит затвердевание переохлажденной жидкости.
40

41. Определение температуры плавления (инструментальное)

Видео процесса плавления
Цветное видео высокого разрешения позволяет изучать
вещества, которые плавятся с разложением или имеют
окраску. С помощью приборов можно также изучать явления
41
термохромизма.

42. Подлинность (методы)

1. Химические реакции подлинности:
А. Общие реакции на подлинность по
функциональным группам (первичные
ароматические амины, алкалоиды,
сложные эфиры и др.)
Б. Специфичные реакции на ионы
В. Специфичные реакции на
органические вещества
42

43. Примеры реакций идентификации по функциональным группам

Реакция на первичную ароматическую аминогруппу:
43

44. Примеры реакций идентификации по функциональным группам

Реакция на первичную аминогруппу
(нингидриновая реакция):
44

45. Специфические реакции на ионы

45

46. Специфические реакции на ионы

46

47. Специфические реакции на ионы

Специфические реакции на ионы
подразделяются:
1. Реакции осаждения
2. ОВ реакции
3. Реакции разложения
4. Реакции комплексообразования
47

48. Специфические реакции подлинности

48

49.

49

50.

50

51.

51

52.

52

53.

53

54.

54

55.

55

56.

56

57. Подлинность (методы)

2. Инструментальные методы
2.1. ИК-спектроскопия (ИК-Фурье)
2.2. Абсорционная спектрофотометрия
в УФ и/или видимой области спектра
2.3. Хроматографические методы (ТСХ,
ГХ, ЖХ)
2.4. Электрофорез, капиллярный
электрофорез (включая пептидное
картирование)
57

58. Подлинность (методы)

3. Физические методы (определение
физических констант):
3.1. Температура плавления, кипения,
температурные пределы перегонки.
3.2. Относительная плотность.
3.3. Показатель преломления.
3.4. Угол оптического вращения.
3.5. Определение вязкости.
58

59. Подлинность (доказательство)

Установление подлинности ЛВ проводится
как минимум 2 методами!
Первая идентификация – специфичный
инструментальный метод (как правило ИКспектрометрия) + дополнительныйметод
(например, хроматографический или
химический метод)
Вторая идентификация – подтверждение
подлинности (используются определение
физических констант, дополнительных
химических методов, абсорбционная
спектрофотометрия и др.).
59

60. Примеси (классификация)

1. Общие технологические примеси – попадающие в процессе
производства.
1.1. Реагентные примеси (SO42-,Cl-, сульфатная зола и др.)
1.2. Примеси от контакта с технологическим оборудованием (HM,
As, Pb, Cd, Fe и др.)
1.3. Остаточные органические растворители
1.4. Вода, влага
2. Специфические примеси – характерны для конкретного ЛВ и
включают:
2.1. Полупродукты синтеза и специфические реагенты
2.2. Побочные продукты синтеза
2.3. Сопутствующие примеси (химически родственные аналоги и
остаточные кол-ва пестицидов и супертоксикантов – для ЛВ
природного происхождения)
2.4. Стереоизомеры-примеси (примеси энантиомеров)
2.5. Продукты разложения и взаимодействия с технологическими
примесями, влагой, кислородом воздуха, органическими
растворителями и др.
3. Механические примеси
60

61. Примеси

1. Летучие (характеризуются потерей в массе при
высушивании).
2. Неорганические (устанавливаются при определении
сульфатной золы, тяжелых металлов и т.д.).
3. Родственные по структуре примеси (определяются
хроматографическими методами или электрофорезом).
Отдельно классифицируют токсичные
(оказывают влияние на фармакологический
эффект – т.е. являются недопустимыми) и
нетоксичные (указывают на степень очистки
ЛВ) примеси.
61

62. Потеря в массе при высушивании (метод гравиметрии)

Является суммарным неспецифичным показателем,
характеризующим наличие воды (влаги), остаточных 62
органических растворителей в ЛВ

63. Определение воды

1. Дистилляция (отгонка) – для жидкостей
2. Титриметрический метод (метод К.
Фишера, микрометод) – для твердых веществ
63

64. Физические и химические свойства, характеризующие чистоту

Прозрачность и степень мутности. Прозрачные растворы –
при освещении их электролампой на черном фоне не
наблюдается присутствие нерастворенных частиц. Степень
мутности устанавливают путем сравнения испытуемого
вещества с эталоном (или с растворителем).
Окраску жидкостей устанавливают путем сравнения
испытуемых растворов с равным объем одного из эталонов при
дневном освещении на матово-белом фоне.
Адсорбционная способность – устанавливается по
обесцвечиванию красителя (метиленовый синий) в растворе ЛВ
определенной концентрации.
Примеси окрашенных веществ (светопоглощающие примеси)
– для неокрашенных веществ определяется абсорбция
раствора ЛВ в воде или органическом растворителе в видимой
области спектра.
64

65. Определение золы

Метод гравиметрии
1. Общая зола (ЛРС, ряд органических
ЛВ) – сжигание навески (1.0000 г)
испытуемого образца в тигле при Т
около 500оС (30 мин), после
охлаждения определяют массу остатка.
2. Сульфатная зола - навеску
смачивают 1 мл Н2SO4 и далее
поступают как при определении общей
золы.
65

66. Определение «тяжелых» металлов

А. Стадия пробоподготовки:
1. Растворение в воде (для ЛВ, хорошо растворимых в воде) или
в смеси с органическими растворителями (ацетон, диоксан);
2. «Мокрая» минерализация (для органических веществ) –
2.1. сжигание ЛВ со смесью MgSO4 и H2SO4 (Т=800оС).
2.2. минерализация смесью H2SO4 и HNO3 (нагревание до
200оC).
2.3. минерализация с использованием СВЧ-нагревания
(тефлоновые сосуды, 2,5 ГГц).
3. «Сухая» минерализация – сплавление с MgO (Т=600оС).
Б. Качественный и/или полуколичественный анализ
(химическая реакция с сульфид-ионом):
1. Качественный – безэталонный (отсутствие окраски с
реагентом)
2. Полуколичественный анализ – сравнение окраски с эталоном,
содержащим предельное количество ионов свинца (эталона).
66
В. Количественный анализ – метод ААС или АЭС.

67. Остаточные органические растворители (классификация)

В основе классификации лежит потенциальная
опасность растворителей для организма человека и
окружающей среды.
Класс 1. Растворители, использования которых
следует избегать (канцерогенные вещества и
супертоксиканты окружающей среды – бензол, ТХУ,
1,2-дихлорэтан, 1,1-дихлорэтен, 1,1,1-трихлорэтан).
Класс 2. Растворители, использование которых
следует ограничивать (негенотоксичные
канцерогены, вещества с существенной
токсичностью) – ацетонитрил, гексан, диоксан,
ксилол, метанол, нитрометан, пиридин, хлороформ,
толуол, этилеггликоль и др.
67

68. Остаточные органические растворители (классификация, продолжение)

Класс 3. Малотоксичные растворители (с
низким потенциалом токсичности у человека,
не требуют установления предельных
содержаний – менее 5000 ppm (мкг/г) или
0,5%) – ацетон, бутанол-1, бутанол-2, гептан,
ДМСО, пентан, уксусная кислота, пропанол-1,
пропанол-2, этанол, ТГФ, пентан и др.
Класс 4. Растворители, для которых
отсутствуют необходимые данные о
токсичности (изооктан, петролейный эфир,
трифторуксусная кислота и др.).
68

69. Остаточные органические растворители

Метод газовой хроматографии (ГХскрининг)
А. Подготовка образца и раствора
сравнения
1. Растворение навески испытуемого образца
в воде (для ЛВ, растворимых в воде).
2. Растворение навески испытуемого образца
в диметилформамиде (ДМФА).
3. Растворение навески испытуемого образца
в 1,3-диметил-2-имидазолидиноне.
Поскольку большинство органических растворителей
«включены» в кристаллическую решетку (или в
структуру в виде сольватов) ЛВ, пробоподготовка
должна включать полное растворение образца с
«разрушением» решетки и возможных сольватов.
CH3
H
N
CH3
O
CH3
N
O
N
CH3
69

70. Остаточные органические растворители (анализ)

Б. Парофазовая пробоподготовка –
проводится для перевода ООР из раствора в
парогазовую фазу (нагревание в герметично
укупоренном сосуде).
В. Газохроматографический анализ парогазовой фазы (полуколичественный анализ с
разделением на капиллярной колонке средней
полярности).
70

71. Специфические примеси

1. Полупродукты синтеза и специфические реагенты
(включая катализаторы)
1.1. Неорганические вещества – катионы, анионы,
комплексные соединения
1.2. Органические вещества
1.3. Генетически-модифицированные микроорганизмы,
вирусы и др.
O
N
N
HN
N
N
N
CH3
Ирбесартан (примесь азид-иона)
71

72. Специфические примеси

Наибольшая группа примесей в органических ЛВ –
родственные по химической структуре химические
вещества (число их ограничено пока только
возможностями методов разделения и детекции). Чем
сложнее хим. структура – тем большее количество
примесей необходимо нормировать.
O
H3C
H3C
CH3
O
H
H
CH3
H
O
H
H3C
O
O
CH3
O
H
H
S
O
H
O
S
H
H
Br
O
H
CH3
O
CH3
H
O
S
H
O
O
H3C
CH3
CH3
Спиронолактон
H3C
O
H
H
O
CH3
H3C
O
CH3
H
H
H
O
O
H
H
H
H
O
72
O

73. Специфические примеси

OH
OH
O
Парацетамол
O2N
H3C
N
H
OH
HO
H2N
O
Побочные
продукты
синтеза
Cl
H3C
O
N
H
OH
O
H3C
H3C
N
H
Промежуточные
продукты
синтеза
N
H
Cl
OH
O
H3C
N
H
73

74. Специфические примеси

Сопутствующие примеси в ЛВ природного
происхождения:
А. химически родственные аналоги
(обладают биологической (фармакологической)
активностью, могут быть потенциально опасны
для организма)
Б. остаточные кол-ва пестицидов и
супертоксикантов (полихлордиоксины,
полихлорбифенилы), продукты
жизнедеятельности микроорганизмов
(афлатоксины) – безусловные токсические
вещества, жестко нормируемые на уровне ppm и
ppb (мкг/г или нг/г)
74

75. Сопутствующие примеси в ЛВ природного происхождения (пример)

OH
O
OH
OH
O
H
H
H
HO
H
OH
H
OH
cholic acid
H
HO
O
H
OH
ursodeoxycholic acid
H
Урсодезоксихолевая кислота
(выделяется из медвежьей желчи)
H
H
OH
OH
chenodeoxycholic acid
75

76. Специфические примеси

Продукты разложения и взаимодействия:
1. с технологическими примесями (тяжелыми металлами
(d-элементы являются катализаторами многих ОВреакций, в том числе с участием O2), ионами железа,
остатками реагентов с реакционоспособными
функциональными группами),
2. с влагой (возможны реакции гидролиза (сложные
эфиры, амиды, карбаматы и др.), поглощение влаги
всегда связано с уменьшением содержания активного
вещества),
3. с кислородом воздуха (кислородочувстивительные
вещества, например, полиненасыщенные жирные
кислоты, сильные восстановители),
4. с остаточными органическими растворителями (ряд
органических растворителей – этиленоксид, дихлорметан,
дихлорэтан, уксусная кислота и др. – достаточно
реакционоспособны и реагируют с ЛВ при хранении).
76

77. Стрессовые испытания -

Стрессовые испытания Испытания устойчивости ЛВ под
воздействием ряда факторов
(температура, реагенты, освещение) с
целью доказательства селективности
методов оценки примесей, изучения
образования и идентификации
примесей, дополнительного изучения
стабильности ЛВ при хранении.
77

78. Стрессовые испытания (условия)

1. Температура – последовательное
повышение температуры при хранении
образца ЛВ на 10оС (50, 60 и т.д.);
2. Влажность (повышение отн. влажности
воздуха при хранении образца ЛВ до 75% и
выше).
3. Реагенты – растворы кислот (1М HCl),
щелочей (1М или 0,1М NaOH), H2O2 (3-30%)
при нагревании.
4. Воздействие света (УФ-свет,
интенсивность - не менее 200 Вт.ч/м2)
78

79. Количественное определение

Методы анализа (классификация,
краткая характеристика, применение
для анализа ЛВ и ЛС, сравнительная
оценка) – это тема следующих как
минимум 3 лекций!
Благодарю за внимание!

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ

Анализ сложных лекарственных форм

Ч. 1. Лекарственные формы аптечного производства

Учебное пособие

Для самостоятельной подготовки и руководство к лабораторным занятиям по фармацевтической химии для студентов фармацевтических факультетов вузов очной и заочной формы обучения

УДК 615.07 (071) ББК Р 282 Е 732

Е.В. Ермилова, В.В. Дудко, Т.В. Кадырова Анализ сложных лекарственных форм Ч. 1. Лекарственные формы аптечного производства: Уч. пособие. – Томск: Изд. 20012 . – 169 с.

Пособие содержит методики анализа лекарственных форм аптечного производства. В нем рассмотрены терминологии, классификации лекарственных форм, приведены нормативные документы, контролирующие качество лекарственных средств аптечного производства, указаны особенности внутриаптечного экспресс-анализа; подробно излагаются основные этапы анализа лекарственных форм, при этом, особое внимание уделяется химическому контролю.

Основная часть пособия посвящена изложению материала по анализу лекарственных форм: жидких (микстуры, стерильные) и твердых (порошки), приведены многочисленные примеры.

В приложение вынесены выписки из приказов, рефрактометрические таблицы, информация по индикаторам, формы отчетных журналов.

Для студентов фармацевтических факультетов высших учебных заведений.

Табл. 21. Илл. 27. Библиогр.: 18 назв.

Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации. . . . . . . . . . . . . . . . ………. 5 1.1.1. Термины, характеризующие лекарственные средства.. ….5 1.1.2. Термины, характеризующие лекарственные формы. . . ….5 1.2. Классификация лекарственных форм. . . . . . . . . . . . . . . . . . . . . . 7

1.3. Нормативные документы и требования к качеству лекарственных средств аптечного производства. . . . . . . . . . . . . …...7 1.4. Особенности экспресс-анализа лекарственных средств аптечного производства. . . . . . . . . . . . . . . . . . . . . . . . . . ……………8

1.4.1. Особенности определения подлинности экспресс-методом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………..9

1.4.2. Особенности количественного экспресс-анализа. . . . . . . . …9

2.1. Органолептический и физический контроль. . . . . . . . . . . . . . . . . . 10 2.1.1. Органолептический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1.2. Физический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.Химический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1.Испытания на подлинность. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.2.. Количественный анализ. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14

2.2.2.1. Способы выражения концентраций. . . . . . . . . . . . . . . . .15 2.2.2.2. Методы титриметрического анализа. . . . . . . . . . . . . . . 16 2.2.2.3. Расчет массы (объема) лекарственной формы и объема титранта для анализа. . . . . . . . . . . . . . . . . . . . . 17

2.2.2.4. Обработка результатов измерений. . . . . . . . . . . . . . . . . .19 2.2.2.5. Оформление результатов анализа. . . . . . . . . . . . . . . . . . 32

III. АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

Жидкие лекарственные формы . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1. Анализ микстур. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .33 3.2. Анализ стерильных лекарственных форм. . . . . . . . . . . . . . . . . . . . .59

Твердые лекарственные формы

3.3. Порошки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Вопросы контроля самоподготовки. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Тестовый контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Ответы тестового контроля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

ПРИЛОЖЕНИЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Предисловие

Основой для написания учебного пособия явилась программа по фармацевтической химии для студентов фармацевтических вузов (факультетов)

М.: ГОУ ВУНМЦ, 2003 г.

Одной из составных частей фармацевтического анализа является анализ лекарственных средств аптечного и заводского производства, осуществляемый методами фармакопейного анализа, по требованиям различных указаний,

пособий, инструкций и т. п.

Учебное пособие посвящено методам исследования лекарственных форм

(микстуры, стерильные, порошки), изготавливаемых в аптеке, где используются все виды внутриаптечного контроля, но самым действенным является химический контроль, который дает возможность проверить соответствие изготовленной лекарственной формы рецептурной прописи, как по подлинности, так и по количественному содержанию. Приведенные методики определения подлинности и количественного содержания составлены таким образом, чтобы использовать оптимальные методы исследования, и на анализ затрачивалось минимальное количество лекарственного средства.

В основной части приведены многочисленные примеры использования рефрактометрии в количественном анализе лекарственных средств, так как этот метод широко используется в аптечной практике.

Предложенное учебное пособие способствует развитию у студентов химического аналитического мышления.

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации

1.1.1. Термины, характеризующие лекарственные средства

Лекарственные средства – вещества, применяемые для профилактики,

диагностики, лечения болезни, предотвращения беременности, полученные из

биологических технологий.

Лекарственное вещество - лекарственное средство, представляющее собой индивидуальное химическое соединение или биологическое вещество.

Лекарственный препарат - лекарственное средство в виде определенной

лекарственной формы.

Лекарственная форма - придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект.

1.1.2. Термины, характеризующие лекарственные формы

Порошки твердая лекарственная форма для внутреннего и наружного применения, состоящая из одного или нескольких измельченных веществ и обладающая свойством сыпучести.

Таблетки – дозированная лекарственная форма, получаемая прессованием лекарственных или смеси лекарственных и вспомогательных веществ, предназначенная для внутреннего, наружного, сублингвального,

имплантационного или парентерального применения.

Капсулы – дозированная лекарственная форма, состоящая из лекарственного средства, заключенного в оболочку.

Мази мягкая лекарственная форма, предназначенная для нанесения на кожу, раны или слизистые оболочки и состоящая из лекарственного вещества и основы.

Пасты - мази с содержанием порошкообразных веществ свыше 20-25%.

Суппозитории дозированная лекарственная форма, твердая при комнатной температуре и расплавляющаяся при температуре тела.

Растворы жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенных для инъекционного, внутреннего или наружного применения.

Капли жидкая лекарственная форма, предназначенная для внутреннего или наружного применения, дозируемая каплями.

Суспензии жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде.

Эмульсии однородная по внешнему виду лекарственная форма,

состоящая из взаимно нерастворимых тонко диспергированных жидкостей,

предназначенная для внутреннего, наружного или парентерального применения.

Экстракты – концентрированные извлечения из лекарственного растительного сырья. Различают жидкие экстракты (Extracta fluida); густые экстракты (Extracta spissa) – вязкие массы с содержанием влаги не более 25%;

сухие экстракты (Extracta sicca) – сыпучие массы с содержанием влаги не более

Настои лекарственная форма, представляющая собой водное извлечение из лекарственного растительного сырья или водный раствор сухих или жидких экстрактов (концентратов).

Отвары настои, отличающиеся режимом экстракции.

Аэрозоли лекарственная форма, в которой лекарственные и вспомогательные вещества находятся под давлением газа-вытеснителя

(пропеллента) в аэрозольном баллоне, герметически закрытом клапаном.

1.2. Классификация лекарственных форм

Классификацию лекарственных форм проводят в зависимости от:

1.2.1. Агрегатного состояния Твердые: порошки, таблетки, драже, гранулы и др.

Жидкие : истинные и коллоидные растворы, капли, суспензии, эмульсии,

линименты, и др.

Мягкие : мази, суппозитории, пилюли, капсулы и др.

Газообразные : аэрозоли, газы.

1.2.2. Количества лекарственных веществ

Однокомпонентные

Многокомпонентные

1.2.3. Места изготовления

Заводского

Аптечного

1.2.4. Способа изготовления

Растворы для инъекций Микстуры Глазные капли Отвары Настои Аэрозоли Настои

Гомеопатические средства и т. д.

1.3. Нормативные документы и требования к качеству

лекарственных средств аптечного производства

Вся производственная деятельность аптеки должна быть направлена на обеспечение высококачественного изготовления лекарственных средств.

Одним из важнейших факторов, определяющих качество лекарственных средств, изготовляемых в аптеке, является организация внутриаптечного контроля.

Внутриаптечный контроль – это комплекс мероприятий, направленных на своевременное выявление и предупреждение ошибок, возникающих в процессе изготовления, оформления и отпуска лекарств.

Лекарства аптечного производства подвергаются нескольким видам контроля в зависимости от характера лекарственной формы.

Система внутриаптечного контроля качества лекарственных средств предусматривает проведение предупредительных мероприятий, приемочного, органолептического, письменного, опросного, физического, химического контроля и контроля при отпуске.

Согласно инструкции Министерства здравоохранения Российской Федерации «О контроле качества лекарственных средств, изготовляемых в аптеках» (Приказ № 214 от 16 июля 1997 г.), все лекарственные средства подвергаются внутриаптечному контролю: органолептическому, письменному и контролю при отпуске – обязательно, опросному и физическому – выборочно, а химическому – в соответствии с пунктом 8 данного приказа (смотри приложение).

1.4. Особенности экспресс-анализа лекарственных средств

аптечного производства

Необходимость внутриаптечного контроля обусловлена соответствующими высокими требованиями к качеству лекарственных средств, изготовляемых в аптеках.

Поскольку изготовление и отпуск лекарственных препаратов в аптеках ограничивается сжатыми сроками, оценку их качества осуществляют экспресс– методами.

Основные требования, предъявляемые к экспресс-анализу, расход минимальных количеств лекарственных средств при достаточной точности и чувствительности, простота и быстрота выполнения по возможности без разделения ингредиентов, возможность проведения анализа без изъятия приготовленного лекарственного препарата.

Если не удается выполнить анализ без разделения компонентов, то используют те же принципы разделения, что и при макро-анализе.

1.4.1. Особенности определения подлинности экспресс – методом

Основное отличие определения подлинности экспресс - методом от макро-анализа заключается в использовании малых количеств исследуемых смесей без их разделения.

Анализ выполняют капельным методом в микро-пробирках, фарфоровых чашках, на часовых стеклах, при этом расходуется от 0,001 до 0,01 г порошка или 1 5 капель исследуемой жидкости.

Для упрощения анализа достаточно проведение одной реакции для вещества, причем наиболее простой, например, для атропина сульфата достаточно подтвердить наличие сульфат-иона, для папаверина гидрохлорида – хлорид - иона классическими методами.

1.4.2. Особенности количественного экспресс-анализа

Количественный анализ может быть выполнен титриметрическими или физико-химическими методами.

Титриметрический экспресс-анализ отличается от макро - методов расходом меньших количеств анализируемых препаратов: 0,05 0,1 г порошка или 0,5 2 мл раствора, причем точную массу порошка можно отвешивать на ручных весах; для повышения точности можно использовать разбавленные растворы титрантов: 0,01 0,02 моль/л.

Навеску порошка или объем жидкой лекарственной формы берут с таким расчетом, чтобы на определение расходовалось 1 3 мл раствора титранта.

Из физико-химических методов в аптечной практике широко используется экономичный метод рефрактометрии при анализе концентратов,

полуфабрикатов и других лекарственных форм.

II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА

2.1. Органолептический и физический контроль

2.1.1. Органолептический контроль

Органолептический контроль заключается в проверке лекарственной формы по следующим показателям: внешний вид («Описание»), запах,

однородность, отсутствие механических примесей. На вкус проверяются выборочно, а лекарственные формы, приготовленные для детей – все.

Однородность порошков, гомеопатических тритураций, мазей, пилюль,

суппозиториев проверяется до разделения массы на дозы в соответствии с требованиями действующей Государственной фармакопеи. Проверка осуществляется выборочно у каждого фармацевта в течение рабочего дня с учетом видов лекарственных форм. Результаты органолептического контроля регистрируются в журнале.

2.1.2. Физический контроль

Физический контроль заключается в проверке общей массы или объема лекарственной формы, количества и массы отдельных доз (не менее трех доз),

входящих в данную лекарственную форму.

При этом проверяются:

Каждая серия фасовки или внутриаптечной заготовки в количестве не менее трех упаковок;

Лекарственные формы, изготовленные по индивидуальным рецептам (требованиям), выборочно в течение рабочего дня с учетом всех видов лекарственных форм, но не менее 3% от количества лекарственных форм, изготовленных за день;

В современном фармацевтическом анализе стали широко применяться неводные растворители. Если раньше основным растворителем в анализе была вода, то теперь одновременно применяют и разнообразные неводные растворители (ледяную или безводную уксусную кислоту, уксусный ангидрид, диметил-формамид, диоксан и др.), позволяющие изменять силу основ-ности и кислотности анализируемых веществ. Получил разви-тие микрометод, в частности капельный метод анализа, удобный для использования во внутриаптечном контроле качества ле-карств.

Широкое развитие в последние годы получают такие методы исследования, при которых используют сочетание различных ме-тодов при анализе лекарственных веществ. Например, хромато-масс-спектрометрия - это сочетание хроматографии и масс-спектрометрии. В современный фармацевтический анализ все больше проникает физика, квантовая химия, математика.

Анализ любого лекарственного вещества или сырья необхо-димо начинать с внешнего осмотра, обращая при этом внима-ние на цвет, запах, форму кристаллов, тару, упаковку, цвет стекла. После внешнего осмотра объекта анализа берут сред-нюю пробу для анализа согласно требованиям ГФ X (с. 853).

Методы исследования лекарственных веществ подразделя-ются на физические, химические, физико-химические, биологи-ческие.

Физические методы анализа предусматривают изучение фи-зических свойств вещества, не прибегая к химическим реакци-ям. К ним относятся: определение растворимости, прозрачности

  • или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвер-девания, кипения. Соответствующие методики описаны в ГФ X .(с. 756-776).

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.).

Для целей идентификации лекарственных веществ исполь-зуют только такие реакции, которые сопровождаются нагляд-ным внешним эффектом, например изменением окраски раство-ра, выделением газов, выпадением или растворением осадков и т. п.

К химическим методам исследования относятся также весо-вые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический ана-лиз вошли такие химические методы исследования, как титро-вание в неводных средах, комплексометрия.

Качественный и количественный анализ органических лекар-ственных веществ, как правило, проводят по характеру функ-циональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсив-ность окраски в зависимости от концентрации вещества, в кон-дуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (реф-рактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро-химические (потенциометрический и полярографический мето-ды), хроматографические методы.