Градиент концентрации на поверхностном слое. Плотности градиент, формирование

Когда градиент концентрации равен нулю, процесс диффузии итти не может. Непременным условием диффузии является также проницаемость поверхности, через которую должен итти процесс диффузии. Когда поверхность непроницаема для частиц вещества, диффузия этого вещества итти также не может.[ ...]

При высоких градиентах концентраций химических веществ в воде происходит нарушение осморегуляторной функции жабр, что имеет важное значение для объяснения механизма действия многих токсикантов и используется в борьбе с болезнями рыб. Например, на этом основан гиперосмотический способ введения вакцин и лечебных препаратов.[ ...]

Суточный ход концентрации 03 у земной поверхности существенно отличается от равнинного. В течение года она снижается к середине дня. Глубина полуденного минимума достигает минимального значения 4-5 ppb в летние месяцы, зимой он слабо выражен. На рис. 4.10 представлены вариации изменений содержания 03 в течение суток для различных месяцев (с апреля по декабрь 1989 г. и с января по март 1990 г.). Специфические особенности такого изменения концентрации приземного озона связаны с горнодолшшой циркуляцией, активно действующей в теплое время года, положительным градиентом концентрации озона в нижней тропосфере, фотохимическими процессами, приводящими в условиях высокой солнечной освещенности при малом содержании NOx к разрушению молекул озона в дневное время. В ночное время падающий стоковый поток приносит богатый озоном чистый воздух из вышележащих слоев в тропосфере.[ ...]

Как известно, градиенты концентраций возникают не только в среде мембраны, но и в растворе. Обычно их пытаются устранить, применяя интенсивное перемешивание. Однако последнее не захватывает нернстовский диффузионный слой и концентрационный градиент в нем не удается устранить. Естественно, что в таких случаях теория должна учитывать влияние примембранной пленки раствора. Для количественного рассмотрения явления необходимо знать толщину этой пленки, которую оценивают методами гидродинамики, измерением диффузии и потенциалов или непосредственно, определяя критическую плотность тока в поле высокой напряженности, т. е. работая в условиях, близких к поляризации. Но если для оценки толщины примембранной пленки раствора используется явление поляризации, то это крайне вредит всему процессу электродиализа.[ ...]

К концу процесса, когда градиент концентрации приближается к нулю, т. е. когда концентрации выравниваются, в единицу времени в раствор переходит все меньше и меньше смолистых.[ ...]

Диффузиофорез - движение частиц, вызываемое градиентом концентрации компонентов газовой смеси. Это явление отчетливо проявляется в процессах испарения и конденсации.[ ...]

Диффузиофорез - движение частиц под влиянием градиента концентрации при отсутствии внешнего электрического поля. Он является аналогом электрофореза, но в отличие от него движущей силой перемещающихся частиц в жидкой фазе является не градиент электрического потенциала, а градиент концентрации растворенных веществ вдоль потока. Это явление было открыто и описано Б.В. Дерягиным и С.С. Духиным в 1964 г.[ ...]

Движущей силой процесса экстракции является градиент концентрации - векторная величина, определяющая направление диффузии. Диффузия включает молекулярную и конвективную составляющие.[ ...]

Для понимания механизмов угнетающего действия высоких концентраций Н+ на активный транспорт №+ определенный интерес, на наш взгляд, представляют соображения Г. Ульча . Он считает, что механизм транспорта ионов при pH воды 4,0 должен преодолеть резко возросший (в 25 тыс. раз) градиент ионов Н+ в сравнении с тем, что имеет место при pH воды 7,4. Такое чрезвычайно высокое увеличение градиента концентраций Н+ неизбежно должно затормозить активный транспорт ионов №+ из воды в кровь, поскольку нормальная работа ионных насосов происходит только при сопряженном выходе из организма во внешнюю среду определенных противоионов: для №+ - это Н+ и ЫН5, а для СГ - это НСОз. Правда, рыбы располагают еще одним, так сказать, резервным механизмом поглощения натрия с использованием в качестве противоиона 1МН4 (№+ = 1МН), тем более, что при закислении воды усиливается образование аммония и его выход из организма должен значительно возрасти. Однако при низком pH воды, т. е. при увеличении концентрации ионов во внешней среде, возрастает сопротивление транспорту аммония и он выделяется, вероятно, не в ионной форме, а в форме аммиака, который обладает более высокой диффузионной способностью . Таким образом, и дополнительный механизм поглощения №+ в обмен на [МН4 может быть заблокированным при высоких концентрациях ионов водорода в окружающей среде.[ ...]

Перемещение на большие расстояния, вероятно, не зависит от градиента концентрации вируса на пути перемещения. Скорее это быстрый случайный перенос инфекционного материала. На ранних стадиях системного заражения вирус, очевидно, может проникать через восприимчивые к инфекции ткани, не вызывая в них инфекции (см., например, ).[ ...]

При испарении с поверхности капли (или пленки жидкости) возникает градиент концентрации пара, но так как общее давление пара должно оставаться постоянным, происходит гидродинамическое течение парогазовой смеси (ПГС), направленное перпендикулярно к поверхности испаряющейся капли и компенсирующее диффузию газов к этой поверхности.[ ...]

Таким образом, перепое волов через мембрану может осуществляться против градиента концентрации с затратой энергии, т. е. путем активпого переноса.[ ...]

Диффузионный перенос в проточном реакторе почти всегда имеет место вследствие возникновения градиента концентраций по длине (см. рис. 2.41). Необходимо отметить, что механизм такого переноса не только молекулярный - поток вещества 03с1С/(]1 определяется через некий эффективный коэффициент диффузии Оэ (например, турбулентная диффузия). И если этот поток сопоставим с конвективным - Си (перенос вещества с потоком, движущимся со скоростью и), то становится очевидным, что его надо учитывать при построении модели.[ ...]

Движущей силой разделения смесей в основном является избыточное давление со стороны исходного потока или градиент концентрации разделяемых веществ.[ ...]

Эффективность процесса экстракции зависит от следующих факторов: величины поверхности взаимодействия между фазами, градиента концентрации извлекаемого вещества, скорости взаимного перемещения фаз, продолжительности контакта. Чем выше эти показатели, тем больше возрастают скорость процесса и полнота очистки.[ ...]

Поскольку магма представляет собой многокомпонентную систему, применение к ней модели чисто термической конвекции, либо конвекции, обусловленной градиентами концентрации вещества, далеко не всегда оправдано. Физически более вероятной в этих случаях является модель двухдиффузной конвекции . В этом виде конвекции “действуют” два потока: первый обусловлен градиентом температуры (диффузионный поток энергии), второй - градиентом концентрации вещества (или нескольких веществ, как, например, в магме). Оба потока взаимодействуют друг с другом. Простейший пример - нагревание снизу раствора солей с некоторым градиентом концентрации. В этой ситуации раствор “разбивается” на ряд горизонтальных конвектирующих слоев, в каждом из которых температура и содержание солей перемешаны. Слои разделены поверхностями, через которые тепло и соль переносятся за счет молекулярной диффузии.[ ...]

Установлено, что биохимическая среда сосняков и ельников пространственно неоднородна как в вертикальном, так и в горизонтальном направлении. Величина градиента концентраций терпеновых углеводородов в горизонтальной плоскости в среднем составила 0,3 мг/м3 (максимальная - 0,6-1,0 мг/м3), в вертикальной плоскости - 0,3-0,5 мг/м3. Неоднородность биохимического режима обусловлена, по-видимому, неодинаковым количеством зеленой биомассы, состоянием биогрупп подроста и дифференцировкой кроны на разнокачественные слои с преобладанием двухлетней хвои в средней части кроны, которая физиологически наиболее активна.[ ...]

При неподвижном хранении перенос паров с поверхности продукта в ГП происходит вследствие молекулярной квази-изотерми-ческой и изобарической диффузии за счет градиента концентраций паров продукта. При этом принимается, что в ГП на поверхности продукта располагается насыщенный парами слой паровоздушной смеси.[ ...]

Систематическое дистанционное зондирование фитопланктона на ходу судна впервые было проведено в 1980 г. , что позволило получить кривые пространственного распределения концентрации фитопланктона в поверхностном слое воды. Анализ этих кривых показал, что возможны резкие градиенты концентрации фитопланктона на расстояниях порядка нескольких километров (рис. 5, кривая I). Отметим, что такого рода резкие градиенты обычно остаются незамеченными, если измерения проводят по стандартной методике лишь на станциях. Для сравнения на рис. 5 приведена кривая 2, построенная по измерениям на станциях.[ ...]

Рассмотрим неподвижный слой жидкости толщиной к, контактирующий со слоем парогазовой смеси толщиной к и (ё - к) (рис. 1.8). При испарении в жидкости и парогазовой смеси возникают градиенты температур (области I и II), а в смеси -градиент концентрации пара испаряющейся жидкости (область II).[ ...]

В дозиметрах пассивного типа диффузия химических веществ осуществляется через стабильный слой воздуха (диффузионные дозиметры) или путем проникания вещества через мембрану согласно градиенту концентраций (проницаемые дозиметры). Дозиметры этих двух типов изображены на рис. 1.49.[ ...]

Поглощение питательных веществ клеткой может быть пассивным и активным. Опо связано с процессом диффузии и идет по градиенту концентрации данного вещества. Как уже рассматривалось выше(см. с. 46), с термодинамической точки зрения направление диффузии определяется химическим потенциалом вещества. Чем выше концентрация вещества, тем выше его химический потенциал. Передвижение идет в сторону меньшего химического потенциала. Необходимо отметить, что направление движения иопов определяется не только химическим, но также электрическим потенциалом. Ионы, обладающие разпоимепиым зарядом, могут диффундировать через мембрану с раяпой скоростью. Благодаря этому создается разность потенциалов, которая, в слою очередь, может служить движущей силой поступления противоположно заряженною иона. Электрический потенциал может также возникать в результате неравномерного распределения зарядов в самой мембране. Таким образом, пассивное передвижение иопов может идти по градиенту химического и электрического потенциала.[ ...]

Поскольку растворение газа является диффузионным процессом, то скорость его пропорциональна поверхности соприкосновения газа с жидкостью, интенсивности их перемешивания, коэффициенту диффузии и градиенту концентрации диффундирующего компонента в газовой и жидкой средах. Поэтому при проектировании абсорберюв особое внимание уделяют организации контакта газового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).[ ...]

Расчет коэффициента диффузии. Беспорядочное тепловое движение молекул газа является основной причиной его диффузии в жидкость. По сложившейся традиции "движущую силу" процесса определяют как разность концентраций газа насыщенной и ненасыщенной фаз, хотя в действительности совершающее броуновское движение молекулы не подвергаются действию дополнительной "силы" в направлении градиента концентрации. Однако статистическое перераспределение молекул газа неизбежно приводит к сокращению разности концентраций, что обусловливает постепенный перенос массы в направлении понижения концентрации.[ ...]

Факторами, которые влияют на флокуляцию практически одинаково в лабораторных и производственных условиях, являются время реакции (время пребывания), распределение энергии перемешивания, свойства раствора и концентрация реагентов. При этом, поскольку сопоставляются непроточная и проточная системы, сравнение времени пребывания оказывается затруднительным. Сложно определить и средний расход энергии на перемешивание на единицу объема реактора в процессах, зависящих от потока. Трудно также количественно отразить пристеночные эффекты, концентрационные флуктуации и градиенты концентрации. Можно ли пренебречь этими эффектами во все моменты времени, будет выяснено лишь после тщательной оценки конкретной ситуации.[ ...]

Мвх и (?„х - материальные и тепловые потоки, входящие в выделенный объем (покидающие объем потоки имеют отрицательное значение); входящие потоки могут быть как конвективными (течение реагентов), так и диффузионного характера (вследствие возникновения градиентов концентраций и температуры).[ ...]

Присутствие ММФ в препаратах НАД-киназы из скелетных мышц кролика было продемонстрировано также при фракционировании на колонке с сефадексом G-200 (3), а значения молекулярных весов олигомеров фермента были уточнены с помощью метода электрофореза в линейном градиенте концентрации полиакриламидного геля (ПААГ) . Результаты, полученные при исследовании фермента двумя указанными методами, показали, что в частично очищенных препаратах НАД-киназы присутствуют олигомеры фермента с молекулярными весами 31000, 65000, 94 000, 160 000, 220 000, 350 000. Наименее ассоциированной формой НАД-киназы является белок с молекулярным весом 31 000, который, по-видимому, можно считать субъединицей фермента на том основании, что после обработки додецилсульфатом натрия двух низкомолекулярных фракций, снятых с колонки (31 000, €5 000), и последующего электрофореза на электрофореграммах не был обнаружен белок с молекулярным весом, меньшим 30 000.[ ...]

Удачно дополняет метод биотестирования на дафниях биоте-стовый анализ с помощью простейших микроорганизмов - инфузорий-туфелек (Paramecium caudatum). Метод биотестового анализа водных проб основан на способности инфузорий избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в благоприятные зоны. Метод позволяет оперативно определять острую токсичность водных проб и предназначен для контроля токсичности природных, сточных, питьевых вод, водных вытяжек из различных материалов и пищевых продуктов.[ ...]

Благодаря содержанию растворов солей, сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например, давление в клетках животных (морских и океанических форм) достигает 30 атм и более. В клетках растений осмотическое давление является еще большим. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.[ ...]

Приведем существующую классификацию полупроницаемых мембран, применяемых при осуществлении процессов обратного осмоса и ультрафильтрации (рис. 6.36). Указанные мембраны могут быть; пористыми и непористыми, причем последние являются квази-гомогенными гелями, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия), поэтому такие мембраны получили название диффузионных.[ ...]

Хотя суша занимает только 30% поверхности земного шара, большую ее площадь занимает растительный мир, активно поглощающий газы из атмосферы. Растения могут поглощать атмосферные газы подобно неорганическим веществам без переработки или, что гораздо важнее, активно включать их в процессы метаболизма, создавая таким образом благоприятный градиент концентрации для дальнейшего поглощения. Хорошим примером является диоксид углерода, который загрязняет атмосферу, являясь основным продуктом сгорания углерода.[ ...]

Для ликвидации отходов широко используется почва, поэтому очень важен выбор типа почвы: с подходящей проницаемостью, размерами частиц и стабильностью; необходимо также поддерживать фильтрующие характеристики почвы с помощью соответствующего режима подачи отходов, так как любые антиокислительные условия в почве будут снижать скорость биодеградации. Первоначальные градиенты концентраций доноров и акцепторов электронов, кислорода и температуры приводят к расслоению микробной популяции, прежде всего к сорбции микроорганизмов, потребляющих органический углерод. После того как произошла сорбция, начинается процесс микробного катаболизма. Процесс захоронения отходов в почве дешев , но может возникнуть целый ряд сложностей, особенно зимой, из-за больших объемов фильтрующихся в почву вод, малого испарения и низкой микробной активности. Даже в наиболее благоприятных условиях может происходить накопление тяжелых металлов и образование относительно непроницаемого слоя уплотненной почвы из-за осаждения нерастворимых солей железа, марганца и кальция . Кроме того, высокие концентрации органических соединений и тяжелых металлов могут приводить к гибели растительного покрова , избежать которой позволяет только предобработка . Так, хотя распыление образующихся на свалке вод, на песчаных почвах, служащих источником кормовых трав, не оказывало на эти травы никакого вредного влияния, но в них накапливались оксиды кальция, магния и фосфора (V). Фильтрующиеся в почву воды свалок, обладая фитотоксичным действием, в то же время содержат необходимые для растений питательные вещества. Исследования Мензера показали, что при выращивании сои на песке с орошением такими водами наблюдается несбалансированность по питательным веществам и процесс нуждается в тщательной регуляции .[ ...]

Широтное распределение эмиссии (на рис. 3.6) указывает на промышленно развитые страны Северного полушария как на основные "поставщики" техногенного С02. Неравномерность распределения источников, а также особенности общей циркуляции атмосферы (существование замкнутых пассатных ячеек и внутри-тропической зоны конвергенции, см. рис. 1.5) служат причиной возникновения широтного градиента концентраций С02.[ ...]

В то время как некоторые участки темно-зеленого типа исчезают и в них репродуцируется ВТМ, другие участки инфицированного листа остаются почти полностью свободными от вируса в течение всей жизни листа. Темно-зеленые участки такого типа, по-видимому, не поддерживают репродукции ВТМ. Этот вывод можпо сделать на том основании, что, во-первых, при суперипфицировании этих участков ВТМ концентрация инфекционного вируса в них по увеличивается и, во-вторых, граница между желто-зелеными тканями с высокой концентрацией инспекционного ВТМ и темно-зеленым участком остается четкой в течение многих недель, несмотря на то что клетки обоих участков соединены плазмодесмами. В темно-зеленых участках вблизи границ с желто-зелеными тканями обнаружен градиент концентрации свободных частиц ВТМ, которые, как мы полагаем, диффундируют из соседних желто-зеленых тканей (фиг. 35).[ ...]

Однако практика показывает, что эти гербициды проникают в корни в сравнительно небольших количествах и поэтому вызывают только частичную гибель корневой системы; часть корней остается живой и способна давать новые побеги. Причиной этого является постепенная адсорбция и распад действующего вещества гербицида при его передвижении по проводящим тканям стебля . Чем дальше от места нанесения, тем ниже концентрация гербицида. В растении создается как бы градиент концентрации гербицида . В результате можно наблюдать, что у растений корнеотпрысковых сорняков, обработанных гербицидами, отмирают только надземная часть, корневище и некоторая часть прилегающих к корневищу корней, а дальше концентрация гербицида в тканях падает настолько, что он только частично повреждает, но не убивает корень . В наиболее отдаленные от корневища участки корня гербицид может не проникнуть совсем.[ ...]

Таким образом, реку можно сравнить с системой, находящейся в состоянии постоянного брожения и обладающей способностью к самоочищению, т.е. к удалению растворенного и взвешенного органического вещества со свойством поллютанта. Химические соединения, которые находятся Н воде или присутствуют в данных отложениях, влияют на водные биоценозы. В результате самоочищения возникает вторичный эффект - появление градиентов концентраций кислорода, питательных элементов и биологических субстанций.[ ...]

Очистка газовых выбросов с помощью жидких поглотителей состоит в контактировании потока загрязненного газа с поглотителем при последующем отделении очищенного газа от отработанного поглотителя. В ходе процесса загрязняющая примесь поглощается жидкостью. Абсорбция - типовой процесс химической технологии, который в технике очистки газовых выбросов часто называется скрубберным процессом. Движущей силой его является градиент концентраций на границе раздела фаз газ - жидкость. Процесс протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффициенты диффузии. Абсорбции посвящено много публикаций в литературе химико-техноло-гического профиля, и к ним следует обращаться за дополнительной информацией. Здесь же будут рассмотрены самые общие характеристики абсорберов, которые широко используются для удаления таких загрязняющих веществ, как сернистый ангидрид, сероводород, легкие углеводороды.[ ...]

Пользуясь выражением (8.1.36), легко оценить вклад каждой стадии в процесс диффузионного извлечения загрязнителя из грунта. Первый член в квадратных скобках определяет продолжительность диффузионной стадии пропитки (напомним, что если капилляры пропитываются в течение первой стадии, определяемой вязким сопротивлением, то в силу ее кратковременности продолжительность этой стадии можно не учитывать); второй член характеризует продолжительность стадии формирования градиента концентрации; третий - продолжительность собственно диффузионного процесса после завершения стадий пропитки и формирования градиента концентрации. Оценим теперь соотношение продолжительности стадий процесса в зависимости от условий проведения процесса выщелачивания загрязнителя.[ ...]

На рис. 2.3, а представлен неподвижный слой катализатора и вьиелены протекающие в нем процессы - составляющие общего процесса. Общий (конвективный) поток реагентов 7 проходит между зернами катализатора. Из потока реагенты диффундируют к поверхности зерен (2) и в поры катализатора (3), на внутренней поверхности которых протекает реакция (4). Продукты обратным путем отводятся в поток. Выделяющееся тепло переносится по слою (5) и затем от слоя через стенку - к хладагенту (б). Возникающие вследствие протекания реакции градиенты концентрации и температуры вызывают потоки вещества и тепла (7), дополнительные к основному конвективному движению реагентов.[ ...]

Изучение распределения и перемещений гидробионтов проводилось на водоемах и их участках, в разной степени подвергнутых антропогенному воздействию. В результате удалось документировать ряд новых поведенческих реакций рыб и беспозвоночных на распространение загрязняющих веществ. Даже в центрах залповых сбросов неочищенных токсичных вод часть особей местных популяций оказывается способной распознать опасность и попытаться уйти из зоны в более чистую литораль и притоки или сменить слой обитания, оторвавшись ото дна, где, как правило, отмечаются наибольшие концентрации вредных веществ. Наиболее быстро уходом в сторону убывания градиента концентрации загрязнителя реагируют мигрирующие (номадные) особи локальных стад рыб, уже через несколько часов или суток оказывающиеся вне опасности. Наименее страдают от загрязнения обитатели пе-лагиали, а наибольшая гибель особей происходит у оседлых немигрирующих группировок бентофагов.[ ...]

В тепловых источниках движение происходит за счет тепловой энергии, подводимой к источнику. Вредные выделения распространяются в виде направленного потока - конвективной струи, как правило, турбулентной. Динамическим называется источник, вредные выделения от которого распространяются в виде загрязненной струи, обладающей некоторой начальной скоростью истечения. Истечение струи происходит за счет избыточного давления внутри объема сосуда, аппарата за счет действия гравитационных сил или нагнетателя. В диффузионных источниках движение происходит за счет градиента концентрации газовой примеси. Направление и интенсивность распространения последней зависят от диффузионных характеристик вещества и турбулентности окружающей среды. Перечисленные типы переноса нередко сочетаются, например, тепловой источник выделяет и газовые примеси.[ ...]

О взаимосвязи роста завязи и роста зародыша и эндосперма можно судить по изменению скоростей роста этих различных частей плода на разных стадиях развития. В некоторых случаях кривая роста плода сигмоидная (например, у яблони), а иногда она имеет две волны (рис. 5.24). У персика изменение скорости роста перикарпа, очевидно, коррелирует с изменениями в скорости роста развивающихся семяи. Стимулирующее влияние развивающихся семян на рост тканей перикарпа, по-видимому, связано, по крайней мере частично, с влиянием образующегося в семенах ауксина. Развивающиеся семена являются богатым источником ауксина, и было показано, что в тканях плода существует градиент концентрации ауксина: наивысшая концентрация ауксина наблюдается в семенах, более низкая - в плаценте и самая низкая - в стенке плода. Такой градиент соответствует представлению о синтезе ауксина в развивающихся семенах и его движении из семян к другим частям плода.[ ...]

Гомогенные системы в воде представляют собой истинные (молекулярные и ионные) растворы различных веществ. Истинные растворы являются термодинамически устойчивыми системами и могут существовать без изменений сколь угодно долго. Несмотря на большое разнообразие соединений, образующих с водой растворы, многие свойства оказываются общими для всех растворов. Так, все растворы электролитов обладают способностью проводить электрический ток, а количественные зависимости, наблюдаемые при электролизе, справедливы для любых растворов. Направленное движение ионов или молекул в растворах происходит не только под влиянием разности потенциалов, но и вследствие градиента концентрации (диффузия). Диффузионный поток растворенного вещества при этом направлен из области с большей концентрацией в область с меньшей концентрацией, а поток растворителя - в обратном направлении. Для всех растворов нелетучих веществ в летучих растворителях характерна более высокая по сравнению с чистым растворителем температура кипения и более низкая температура замерзания. Повышение температуры кипения и понижение температуры замерзания будет тем большим, чем больше концентрация раствора.[ ...]

Для понимания природы и механизма парникового эффекта важно также знать, что вклад одного и того же компонента в общий поток излучения сильно зависит от его распределения в толще атмосферы. Проиллюстрируем это на примере трех главных "парниковых” газов - паров воды, озона и С02. Из рис. 3.1 видно, что полоса поглощения молекулы диоксида углерода с центром при 15 мкм в значительной степени перекрыта полосами водяного пара. Отсюда можно было бы сделать вывод, что роль С02 в поглощении радиации не столь уж и велика. Однако, если мы обратимся к рис. 3.3, на котором приведены полученные в ходе реальных наблюдений в январе 1972 г. вертикальные профили Н,0 и 03, то увидим, сколь велик градиент концентрации паров воды. Напротив, диоксид углерода довольно равномерно перемешан в слое воздуха от примерно 1 до 70 км. Следовательно, выше 2-3 км главным поглотителем восходящего тепловогоИзлучения подстилающей поверхности может оказаться именно С02, и это умозаключение подкрепляется представленными в табл. 3.2 результатами расчетов.[ ...]

Исследования времени диэлектрической релаксации и других свойств, упомянутых выше и зависящих от скоростей молекулярных движений, дают достаточно точные значения скоростей молекулярной переориентации и трансляции в жидкой воде. Общий метод таких исследований состоит в том, что прикладывается напряжение к жидкой воде и измеряется время, необходимое для того, чтобы жидкость пришла в равновесное состояние в присутствии напряжения, или в том, что напряжение снимается и измеряется время, необходимое жидкости для возвращения в исходное состояние равновесия. Для диэлектрической релаксации напряжением является приложенное электрическое поле, для самодиффузии - градиент концентрации изотопа, для вязкости - напряжение сдвига и т. д. Однако подобные исследования свойств воды, зависящих от скоростей молекулярных движений, не дают детальной картины движений молекул воды, и поэтому представляется вероятным, что прежде чем получить такую картину, необходимо дальнейшее развитие фундаментальной теории неравновесных процессов.[ ...]

Между поглощением из почвы воды и минеральных веществ существуют сильные взаимодействия, но по-настоящему жесткая корреляция между ними имеет место лишь при поглощении нитратов. Из всех основных элементов минерального питания растений азот в форме нитрат-ионов (N03”) перемещается в почвенных растворах наиболее беспрепятственно; эти ионы переносятся к поверхности корня общим потоком воды через капилляры. Нитрат-ионы обычно поступают к корню отовсюду, откуда поступает и вода. Вода же быстрее всего поступает к корню в почве, насыщенной водой до (или почти до) значения полевой влагоемкости, а также в крупнопористой почве. Стало быть, именно в этих условиях наибольшей подвижностью будут обладать и нитраты. Зоны пониженной ресурсообеспеченности (ЗПР) по нитратам бывают при этом весьма обширными, а градиенты концентраций нитратов вокруг корней - небольшими. Большие размеры ЗПР повышают вероятность перекрывания ЗПР, порождаемых отдельными корнями. При этом может возникать конкуренция (даже между корнями одного и того же растения): в самом деле, истощение ресурса одним органом начинает сказываться на другом органе лишь тогда, когда они приступают к эксплуатации ресурсов, доступных обоим, т. е. когда их ЗПР перекрываются. Чем ниже содержание доступной воды в почве, тем медленнее перемещается она к корням и тем медленнее поступают к поверхности корня нитрат-ионы. ЗПР при этом становятся меньше, а степень их перекрывания снижается. Таким образом, если воды недостает, то снижается и вероятность того, что между корнями возникнет конкуренция за нитраты.[ ...]

Мембранные методы отличаются типами используемых мембран, движущими силами, поддерживающими процессы разделения, а также областями их применения (табл. 26). Существуют мембранные методы шести типов: микрофильтрация - процесс мембранного разделения коллоидных растворов и взвесей под действием давления; ультрафильтрация - процесс мембранного разделения жидких смесей под действием давления, основанный на различии молекулярных масс или молекулярных размеров компонентов разделяемой смеси; обратный осмос - процесс мембранного разделения жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление; диализ - процесс мембранного разделения за счет различия скоростей диффузии веществ через мембрану, проходящий при наличии градиента концентрации; электродиализ - процесс прохождения ионов растворенного вещества через мембрану под действием электрического поля в виде градиента электрического потенциала; разделение газов - процесс мембранного разделения газовых смесей за счет гидростатического давления и градиента концентрации.

Здравствуйте! Согласно определению, градиент концентрации направлен из стороны меньшей концентрации в сторону большей. Поэтому про диффузию всегда говорят, что она направлена против градиента концентрации, т.е. из стороны с большей концентрации в сторону меньшей.
Однако, когда читаешь литературу про жизнедеятельность клетки, фотосинтез, в ней всегда говорится, что "по градиенту концентрации" - это в сторону уменьшения концентрации, а "против градиента концентрации"- в сторону увеличения концентрации и, таким образом, например, простая диффузия в клетках (или, иначе, обычная диффузия) направлена по градиенту концентрации.
Но ведь возникает противоречие. Получается, что выражение "по градиенту концентрации" на самом деле есть движение противное направлению градиенту концентрации. Как такое может быть?

Эта устойчивая и широко распространенная ошибка связана с различием в понимании направления вектора градиента концентрации в физике и биологии. Биологи предпочитают говорить о направлении вектора градиента концентрации от большего к меньшему значению, а физики от меньшего к большему.

Оглавление темы "Эндоцитоз. Экзоцитоз. Регуляция клеточных функций.":
1. Воздействие Na/K-насоса (натрий калиевого насоса) на мембранный потенциал и объем клетки. Постоянный объем клетки.

3. Эндоцитоз. Экзоцитоз.
4. Диффузия в переносе веществ внутри клетки. Значение диффузии в эндоцитозе и экзоцитозе.
5. Активный транспорт в мембранах органелл.
6. Транспорт в везикулах клетки.
7. Транспорт путем образования и разрушения органелл. Микрофиламенты.
8. Микротрубочки. Активные движения цитоскелета.
9. Аксонный транспорт. Быстрый аксонный транспорт. Медленный аксонный транспорт.
10. Регуляция клеточных функций. Регуляторные воздействия на клеточную мембрану. Мембранный потенциал.
11. Внеклеточные регуляторные вещества. Синаптические медиаторы. Локальные химические агенты (гистамин, фактор роста, гормоны, антигены).
12. Внутриклеточная коммуникация с участием вторых посредников. Кальций.
13. Циклический аденозинмонофосфат, цАМФ. цАМФ в регуляции функции клетки.
14. Инозитолфосфат «ИФ3». Инозитолтрифосфат. Диацилглицерол.

Значение Na/K-насоса для клетки не ограничивается стабилизацией нормальных градиентов К+ и Na+ на мембране. Энергия, запасенная в мембранном градиенте Na+, часто используется для обеспечения мембранного транспорта других веществ. Например, на рис. 1.10 показан «симпорт» Na+ и молекулы сахара в клетку. Мембранный транспортный белок переносит молекулу сахара в клетку даже против градиента концентрации, в то же время Na+ движется по градиенту концентрации и потенциала , обеспечивая энергию для транспорта Сахаров. Такой транспорт Сахаров полностью зависит от существования высокого градиента натри я; если внутриклеточная концентрация натрия существенно возрастает, то транспорт сахаров прекращается.

Рис. 1.8. Соотношение между скоростью транспорта молекул и их концентрацией (в месте входа в канал или в месте связывания насоса) при диффузии через канал или при насосном транспорте. Последний при высоких концентрациях насыщается (максимальная скорость, V max); значение по оси абсцисс, соответствующее половине максимальной скорости насоса (Vmax/2), является равновесной концентрацией Кт

Для различных сахаров существуют разные симпортные системы. Транспорт аминокислот в клетку сходен с транспортом Сахаров, показанным на рис. 1.10; он также обеспечивается градиентом Na+; существует по крайней мере пять различных систем симпорта, каждая из которых специализирована для какой-либо одной группы родственных аминокислот.


Рис. 1.10. Белки, погруженные в липидный бислой мембраны, опосредуют симпорт глюкозы и Na в клетку, а также Са/Na-антипорт, в котором движущей силой является градиент Na на клеточной мембране

Помимо симпортных систем существуют также «антипортные ». Одна из них, например, за один цикл переносит один ион кальция из клетки в обмен на три входящих иона натрия (рис. 1.10). Энергия для транспорта Са2+ образуется за счет входа трех ионов натрия по градиенту концентрации и потенциала. Этой энергии достаточно (при потенциале покоя) для поддержания высокого градиента ионов кальция (от менее 10 -7 моль/л внутри клетки до приблизительно 2 ммоль/л вне клетки).

ГРАДИЕНТ (лат. gradiens, gradient шагающий) - векторная величина, показывающая направление наиболее быстрого изменения какой-либо функции. Понятием Г. широко пользуются в физике, физ. химии, метеорологии и других науках для характеристики скорости изменения какой-либо величины на единицу длины в направлении ее максимального роста; Г. в биологии - это количественное изменение морфол, или функциональных (в т. ч. биохим.) свойств вдоль одной из осей тела, органа или клетки на любой стадии их развития. Г., отражающий изменение какого-либо физиол, показателя (напр., интенсивности обмена веществ), называют физиол, градиентом (см. Градиент физиологический). При рассмотрении различных биол, процессов чаще встречаются с Г. электрического поля, концентрационным Г., осмотическим Г., гидростатическим Г. и температурным Г.

Градиент электрического поля в биол, объектах возникает в результате перемещения ионов внутри клеток и тканей или вследствие приложения внешнего источника электрического поля, напр, при гальванизации (см. Гальванизация , Электрофорез). Особенно большие значения Г. электрического поля имеют место на биол, мембранах. Так, при толщине мембраны ок. 10 нм и при изменении потенциала на 10 же градиент электрического поля на ней составит 104 в/см. Такое значительное изменение внутреннего электрического поля мембраны может привести к изменению ее поляризации и степени упорядоченности ее структуры. Существует пороговое значение Г. потенциала, при к-ром клетки генерируют потенциал действия (см. Биоэлектрические потенциалы , Возбуждение).

Концентрационный градиент в живых тканях возникает при условии наличия значительной разницы в концентрации ионов во внутренней и внешней среде, напр, высокая внутренняя концентрация ионов калия и низкая концентрация ионов натрия и хлора. Так, внутри волокна сердечной мышцы крысы содержится 140 мкмолей ионов калия и 13 мкмолей ионов натрия на 1 г внутриклеточной воды. Во внешней среде содержится 2,7 мкмоля ионов калия и 150 мкмолей ионов натрия. Концентрационный Г. ионов калия может быть объяснен существованием так наз. доннановского равновесия (см. Мембранное равновесие) по обе стороны биол, мембраны. При этом недиффундирующие анионы (напр., анионы белковых макромолекул) вызывают неравномерное распределение концентрации как анионов (напр., C -), так и катионов (напр., K +) по обе стороны мембраны. Существование концентрационного Г. ионов натрия не может быть объяснено доннановским равновесием, и перенос ионов натрия против концентрационного Г. объясняют существованием активного транспорта ионов (см.). Концентрационный Г. ионов может возникать также в результате протекания метаболических процессов. В итоге все процессы перераспределения ионов по разные стороны биол, мембраны приводят к возникновению потенциалов покоя (см. Биоэлектрические потенциалы).

Поступление и выход различных веществ из клеток происходит вследствие наличия Г. их концентрации. Скорость диффузии веществ определяется соотношением: dn/dt =Dq grad C, где n - количество диффундирующих молекул через поверхность q, D - коэф. диффузии, grad С - градиент концентрации; коэффициент диффузии определяется вязкостью среды и размером молекул вещества. Различие в скорости диффузии катионов и анионов (их подвижности) приводит к появлению диффузионного потенциала φ, который возникает на границе двух соприкасающихся растворов и описывается уравнением Нернста:

где U - подвижность катиона, V - подвижность аниона, С1 и С2 - концентрация электролита в двух соприкасающихся р-рах; R - газовая константа, T - абсолютная t°, n - заряд иона, F - число Фарадея. Диффузионный потенциал минимален, когда подвижность катиона и аниона равны или близки, напр, в случае раствора KCl. Поэтому этот электролит используется в биологии и медицине в качестве жидкостного проводника при гальванизации, электрофорезе и т. д.

Осмотический градиент характеризует разницу в величине осмотического давления (см.) в системе растворитель - раствор, разделенных полупроницаемой мембраной, т. е. проницаемой для молекул растворителя, но непроницаемой для растворенного вещества. Осмотическое давление при этом определяется как величина силы, к-рую нужно приложить к р-ру, чтобы остановить движение растворителя в сторону р-ра. При изменении осмотического давления во внешней среде клетки (напр., при его увеличении) вода будет поступать в клетку; скорость поступления воды при этом будет пропорциональна осмотическому Г. (между внутренней и внешней средой клетки). Так, для эритроцитов скорость проникновения воды составляет величину 2,5 мкм 3 /мсм 2 -мин-атм. Величина осмотического давления крови высших животных ок. 40 мм вод. ст. и составляет малую часть от всего кровяного давления. При нарушении белкового или солевого обмена изменяется также и Г. осмотического давления, напр, при его увеличении вода будет поступать в ткань, вызывая отек (см.).

Гидростатический градиент характеризует перепад давления между внешней и внутренней средой клетки, целого организма или отдельных его частей. Так, работа сердца приводит к появлению гидростатического градиента. В артериальной части кровеносной системы возникает положительное гидростатическое давление, в венозной - отрицательное (см. Кровяное давление). Гидростатическое давление может компенсировать осмотическое, что имеет место в капиллярах кровеносной системы. При росте гидростатического Г. (напр., при гипертензии) усиливается выход воды из кровяного русла в ткани, что может привести к возникновению отеков.

Температурный градиент, возникающий вследствие разности температур внутри и вне клетки, существенно влияет практически на все процессы жизнедеятельности. Так, скорость диффузии электролитов увеличивается на 30- 40% при повышении температуры на 10°. Примерно на столько же увеличивается электропроводность клеток. Перенос тепла пропорционален Г. температуры по обе стороны поверхности; при этом Q = -λgrad T, где Q - количество тепла, переносимого через теплопроводящую поверхность, λ - коэф. теплопроводности, T - абсолютная температура. Основным источником тепла в организме человека и животных являются экзотермические процессы, протекающие при работе мышц и внутренних органов. Рассеивание тепла (напр., с поверхности тела человека) может происходить также путем конвекции, излучения и испарения. Все эти процессы ускоряются с ростом температурного Г.

Библиография: Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968; Пасынский А. Г. Биофизическая химия, М., 1968.

Ю. М. Петрусевич.

Предметная область: полимеры, синтетические волокна, каучук, резина

Наглядно представить образование в суспензии такого градиента концентрации довольно трудно, благодаря влиянию молекул растворителя. Явление это можно сравнить с поведением смеси двух газов при постоянных температуре и давлении, но с градиентом концентрации того и другого компонента. Рассмотрим плоскость, проведенную через такую газовую смесь перпендикулярно направлению градиента концентрации. Предположим, что концентрация компонента А выше в левой части плоскости и ниже в правой; распределение компонента В должно быть обратное. В единицу времени в левой части плоскости должно приходить в столкновение большее число молекул А, чем в правой; для молекул В справедливо обратное. Следовательно, больше молекул А будет проходить через плоскость слева направо и подобным же образом больше молекул В будет двигаться справа налево. В результате наступит уравнивание концентраций двух компонентов. Этот процесс представляет собой диффузию газов. Если теперь перейти к жидкой суспензии, в которой существует подобный же градиент концентрации взвешенных частичек, то ясно, что можно повторить предыдущее рассуждение, приложив его к движению твердых частичек и молекул растворителя через плоскость, проведенную под прямым углом к градиенту концентрации . Однако общее число частичек в единице объема не остается постоянным, и рассуждение соответственно следует изменить. Ясно, что число молекул растворителя, пересекающих плоскость в направлении от места с высокой концентрацией взвешенных частичек, будет меньше, чем в обратном направлении из-за присутствия частичек, преграждающих путь.

Закон Фика для диффузии в одном направлении связывает положительный поток частиц А с отрицательно направленным градиентом концентрации (постоянная плотность и малая концентрация частиц):

Как отмечалось выше, электроактивные вещества достигают поверхности электрода в результате: 1) диффузии, обусловленной градиентом концентрации между поверхностью электрода и объемом раствора, и 2) электрической миграции заряженных частиц, обусловленной градиентом потенциала между электродом и раствором. Этот миграционный ток необходимо исключить или уменьшить насколько возможно добавлением большого избытка инертного электролита, который не участвует в реакции на электроде. Возникающий при этом предельный ток будет только диффузионным током. Для того чтобы можно было исключить миграционный ток, концентрация инертного электролита должна быть по крайней мере в 50 раз больше концентрации электроактивного вещества.

При идеальном диффузионном токе электроактивное вещество достигает электрода только в результате диффузии, обусловленной градиентом концентрации, возникающим вследствие убыли вещества на электроде. Этот градиент существует на протяжении диффузионного слоя, где концентрация меняется от практически нулевой на поверхности электрода до концентрации, существующей в объеме раствора. Диффузионный ток можно определить по высоте волны на кривой сила тока - напряжение.

Основные законы диффузии были, как известно сформулированы Фиком. Первый закон Фика устанавливает связь между скоростью диффузионного потока / и градиентом концентрации С по расстоянию х от по-

Так как влага может быть удалена из глиняных изделий только путем испарения с поверхности, а из внутренних частей продвигается наружу только под действием силы, связаннойс градиентом концентрации *, то полное устранение усадочной деформации при сушке невозможно. Она может быть, однако, сведена к минимуму при достаточной продолжительности сушки и при соответствующем контроле температуры и влажности, необходимом для устранения неравномерного распределения влаги на поверхности. Такой контроль вместе с тепловым режимом лучше всего достигается при использовании противоточных сушилок, преимущественно туннельного типа. Чем более пластична смесь и более сложна форма, тем более тщательна должна быть сушка **.

При экстрагировании полимерного образца жидкостью с постепенно возрастающей растворяющей способностью в первую очередь растворяются более низкомолекулярные части, а потом остальные Улучшение растворяющей способности достигается путем изменения температуры или состава экстрагирующей жидкости Особенно хорошие результаты получаются при применении колонны с градиентом концентрации и температуры, когда происходит многократное растворение и осаждение полимера

При скорости вращения (4-6)-104 об/мин в ультрацентрифуге развивается центробежное ускорение, равное ~106 g. При таких проведения эксперимента - наблюдение за неравновесным процессом седиментации - называют скоростной седиментацией. Измерение положения границы 16 и ее смещения во времени проводится с помощью оптических схем (см. стр. 160), что позволяет рассчитать коэффициент седиментации : „ _ \ Лт_ _ 1 d In r

Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно "наслоить" на поверхность раствора полимера с концентрацией С\ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении , в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением

При контакте катеонита вида (НМ)ж с разбавленным раствором сильного электролита М+А~ величина [М+] в ионите будет значительно больше, чем [М+] в растворе, а [А~~] - меньше [А~]. Вследствие того, что концентрация их в двух фазах различна, небольшие подвижные ионы будут стремиться выравнивать ее путем диффузии, а это приведет к нарушению электронейтральности раствора, к возникновению положительного пространственного заряда в растворе и отрицательного в ионите. В результате установится равновесие Доннана между градиентом концентрации, вызванным диффузией, и электростатическим потенциалом, препятствующим ей, и на границе катионит-раствор (рис. 191) Рис. 191. Схема распределения заря-возникнет разность потенциалов - доннановский потенциал

Диффузионные явления при формировании системы адгезив - субстрат весьма разообразны. К ним относятся поверхностная диффузия адгезива, самодиффузия в слое адгезива, иногда происходит объемная одно- или двусторонняя диффузия через границу раздела адгезив - субстрат. Кроме того, перечисленные процессы имеют различные механизмы . Например, различают активированную, полуактивированную и неактивированную диффузию. Ниже эти различные процессы будут рассмотрены более подробно. >> Часто полагают, что движущей силой диффузии является градиент концентрации. Однако перемещение, вызванное градиентом концентрации и приводящее к постепенной гомогенизации системы, не исчерпывает все возможные проявления этого сложного процесса. Весьма часто при диффузии происходит не выравнивание концентраций, а, наоборот, дальнейшее разделение компонентов системы. Поэтому более правильно считать, что движущей силой диффузии является разность термодинамических потенциалов, и перенос вещества путем диффузии сопровождается понижением свободной энергии системы. Выравнивание термодинамических потенциалов и приближение к термодинамическому равновесию достигается за счет теплового движения атомов (молекул). Термодинамический потенциал можно разложить на энергетическую и энтропийную составляющие. Механизм диффузии зависит от соотношения этих составляющих. В некоторых случаях внутренняя энергия системы при диффузии не изменяется, и