Единица измерения массы в си. Единицы измерения СИ

Согласно определению, утвержденному XI Генеральной конференцией по мерам и весам, принявшей систему СИ, в качестве основной механической единицы принята единица массы - килограмм. Определение килограмму дано следующее:

Единицей массы - килограммом - является масса вещества, равная массе прототипа килограмма.

Прототип килограмма представляет собой находящийся в Международном бюро по мерам и весам в Севре под Парижем цилиндр из сплава 90% платины и 10% иридия диаметром около 39 мм и такой же высоты. Выбор этого сплава обеспечивает высокие качества при хранении: химическую стойкость, однородность. Сплав легко полируется и хорошо очищается. Ввиду большой плотности, составляющей 21,5 г/см 3 он обладает тем недостатком, что отделение от него уже малых частей приводит к большому изменению массы. По этой причине копии с эталонов массы (вторичные эталоны различных рангов), как правило, изготавливают из стали или из латуни.

Для обеспечения единства измерений массы в ходе установления и утверждения прототипа килограмма было изготовлено много его экземпляров. Масса прототипов обеспечивалось с отличием на уровне 10 -8 по относительной погрешности. Прототипы были проаттестованы в Международном бюро по мерам и весам. Каждому экземпляру была приписана погрешность. Возможные колебания массы прототипов не превышали 25 мкг, что соответствует относительной погрешности 2,5 ×10 -8 . В Россию как в страну-участницу Метрической конвенции в 1889 г. был направлен прототип № 12, который хранится до настоящего времени во Всероссийском научно-исследовательском институте им. Д.И. Менделеева (бывшая Главная палата мер и весов России) в Санкт-Петербурге.

Первоначально прототип массы должен был совпадать с массой одного кубического дециметра воды при ее наибольшей плотности при температуре Т = 3,98°С и давлении 101325 Па. Однако, затем максимальная плотности воды была найдена равной 0, 999 972 г/см 3 , т. е. прототип массы оказался на 28 мкг больше, чем был задуман. Это сказалось бы на определении единицы объема, если бы таковая вводилась бы какобъем одного миллилитра воды. При известной массе прототипа килограмма единицу объема можно определить как объем 1000 г воды при наибольшей плотности и нормальном давлении. Определенная таким образом единица соотносилась бы с производной единицей объема системы СИ как

(2.39)

Международная система единиц СИ не является установленной для всех на все времена. Уже указывалось, что многие страны пользуются другой системой мер. Методы физических измерений также постоянно совершенствуются. Именно по этой причине переопределен целый ряд величин, например, метр, кандела. Ампер. Почти для всех основных единиц системы СИ приняты новые определения, основанные на физических явлениях, отличающихся постоянством и неподверженностью влиянию внешних воздействий. Это дает возможность создать так называемые «естественные» или «нетленные» эталоны. Такие эталоны созданы для основных единиц: длины - метра, времени - секунды, силы тока - Ампера, термодинамической температуры - Кельвина, силы света - канделы. Поиски такого же эталона для единицы массы - килограмма - еще не завершились успехом. Точность, достигаемая с помощью имеющегося эталона килограмма, очень высока и пока удовлетворяет все запросы практики. Тем не менее с выходом человека в Космос, с освоением Мирового океана и т. д. для многих нужд в технике измерений желательно иметь естественный эталон массы. Поиски возможности замены искусственного эталона массы обозначена сейчас метрологами как одна их наиболее актуальных научных и практических проблем.

Одним из путей решения такой задачи является возможность объединения проблем создания и хранения эталонов единицы количества вещества и единицы массы - моля и килограмма. Для этого необходимо создать точное средство измерения количества вещества с диапазоном изменения величины на 23 - 25 порядков, что соответствует как детектированию отдельных частиц, так и макроскопическим измерениям количества вещества, которое могло бы быть принято в качестве эталона инерционной или тяготеющей массы.

В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц (система СИ) (Systeme Internatinal d"Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.

Основные единицы измерения Международной системы единиц

В основу определения всех вспомогательных единиц в системе СИ положены семь основных единиц измерения. Основными физическими величинами в Международной системе единиц (СИ) являются: длина ($l$); масса ($m$); время ($t$); сила электрического тока ($I$); температура по шкале Кельвина (термодинамическая температура) ($T$); количество вещества ($\nu $); сила света ($I_v$).

Основными единицами в системе СИ стали единицы выше названных величин:

\[\left=м;;\ \left=кг;;\ \left=с;\ \left=A;;\ \left=K;;\ \ \left[\nu \right]=моль;;\ \left=кд\ (кандела).\]

Эталоны основных единиц измерения в СИ

Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.

Метром (м) называют длину пути, который проходит свет в вакууме за время равное $\frac{1}{299792458}$ с.

Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.

Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).

Один ампер (А) - это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, расположенных на расстоянии 1 метр, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2\cdot {10}^{-7}Н$ на каждый метр проводника.

Один кельвин (К) - это термодинамическая температура равная $\frac{1}{273,16}$ части от температуры тройной точки воды.

Один мол (моль) - это количество вещества, в котором имеется столько же атомов, сколько их содержится в 0,012 кг углерода (12).

Одна кандела (кд) равна силе света, который испускает монохроматический источник частотой $540\cdot {10}^{12}$Гц с энергетической силой в направлении излучения $\frac{1}{683}\frac{Вт}{ср}.$

Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.

Производные величины системы СИ

Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.

В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.

Система СИ включает производные единицы, обладающие специальными названиями. Эти названия - компактные формы представления комбинации основных величин. Приведем примеры единиц системы СИ, имеющих собственные наименования (табл. 2).

Каждая величина в системе СИ имеет только одну единицу измерения, но одна и та же единица измерения может использоваться для разных величин. Джоуль - единица измерения количества теплоты и работы.

Система СИ, единицы измерения кратные и дольные

В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.

Приведем примеры таких приставок (табл.3).

При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.

Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.

Внесистемные единицы

Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.

Многообразие отдельные единиц (силу, например, можно было выразить в кг, фунтах и др.) и систем единиц создавало большие трудности во всемирном обмене научными и экономическими достижениями. Поэтому еще в 19 веке отмечалась необходимость в создании единой международной системы, которая бы включала в себя и единицы измерений величин, используемых во всех разделах физики. Однако, соглашение о введении такой системы было принято только в 1960 году.

Международная система единиц – это правильно построенная и взаимосвязанная совокупность физических величин. Она была принята в октябре 1960 года на 11 генеральной конференции по мерам и весам. Сокращенное название системы –SI. В русской транскрипции – СИ. (система интернациональная).

В СССР в 1961 году был введен в действие ГОСТ 9867-61, которым устанавливается предпочтительное применение этой системы во всех областях науки, техники, и преподавания. В настоящие время действующим является ГОСТ 8.417-81 «ГСИ. Единицы физических величин». Этот стандарт устанавливает единицы физических величин, применяемые в СССР, их наименования, обозначения и правила применения. Он разработан в полном соответствии с системой СИ и с СТ СЭВ 1052-78.

Система Си состоит из семи основных единиц, двух дополнительных и ряда производных. Кроме единиц СИ допускается применение дольных и кратных единиц, получаемых умножением исходных величин на 10 n , гдеn= 18, 15, 12, … -12, -15, -18. Наименование кратных и дольных единиц образуется присоединением соответствующих десятичных приставок:

экса (Э) = 10 18 ; пета (П) = 10 15 ; тера (Т) = 10 12 ; гига (Г) = 10 9 ; мега (М) = 10 6 ;

мили (м) = 10 –3 ; микро (мк) = 10 –6 ; нано (н) = 10 –9 ; пико (п) = 10 –12 ;

фемто (ф) = 10 –15 ; атто (а) = 10 –18 ;

ГОСТ 8.417-81 разрешает использовать кроме указанных единиц ряд внесистемных единиц, а также единицы, временно разрешенные к применению до принятия соответствующих международных решений.

К первой группе относятся: тонна, сутки, час, минута, год, литр, световой год, вольт-ампер.

Ко второй группе относятся: морская миля, карат, узел, об*мин.

1.4.4 Основные единицы си.

Единица длинны – метр (м)

Метр равен 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями 2p 10 и 5d 5 атома криптона-86.

В международном бюро мер и весов и в крупных национальных метрологических лабораториях созданы установки для воспроизведения метра в длинах световых волн.

Единица массы – килограмм (кг).

Масса – мера инерции тел и их гравитационных свойств. Килограмм равен массе международного прототипа килограмма.

Государственный первичный эталон килограмма СИ предназначен для воспроизведения, хранения и передачи единицы массы рабочим эталонам.

В состав эталона входят:

    Копия международного прототипа килограмма – платино-иридиевый прототип №12, представляющий собой гирю в виде цилиндра диаметром и высотой 39мм.

    Равноплечие призменные весы №1 на 1 кг с дистанционным управлением фирмы Рупхерт (1895 года) и №2 изготовленные во ВНИИМе в 1966г.

Один раз, в 10 лет государственный эталон сравнивают с эталоном-копией. За 90 лет масса государственного эталона увеличилась на 0,02мг из-за пыли, адсорбции и коррозии.

Сейчас масса является единственной величиной единица, которой определяется через вещественный эталон. Такое определение имеет ряд недостатков – изменение массы эталона с течением времени, невоспроизводимость эталона. Ведутся поисковые работы по выражению единицы массы через естественные константы, например через массу протона. Планируется также разработка эталона через определенное число атомов кремния Si-28. для решения этой задачи, прежде всего, должна быть повышена точность измерения числа Авогадро.

Единица измерения времени – секунда (с).

Время является одним из центральных понятий нашего мировоззрения, одним из важнейших факторов в жизни и деятельности людей. Его измеряют с помощью стабильных периодических процессов – годового вращения Земли вокруг Солнца, суточного – вращения Земли вокруг своей оси, различных колебательных процессов. Определение единицы времени – секунды несколько раз менялось в соответствии с развитием науки и требований к точности измерения. Сейчас существует следующее определение:

Секунда – равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133.

В настоящее время создан лучевой эталон времени, частоты и длинны, используемый службой времени и частоты. Радиосигналы позволяют передавать единицу времени, поэтому она широко доступна. Погрешность эталона секунды 1·10 -19 с.

Единица силы электрического тока – ампер (А)

Ампер равен силе не изменяющегося тока, который при прохождении по двум параллельным и прямолинейным проводникам бесконечной длинны и ничтожно малой площади поперечного сечения, расположенным в вакууме на расстоянии 1 метра друг от друга, вызвал бы на каждом участке проводника длинной 1 метр силу взаимодействия, равную 2·10 -7 Н.

Погрешность эталона ампера 4·10 -6 А. Эту единицу воспроизводят с помощью так называемых токовых весов, которые приняты в качестве эталона ампера. Планируется использовать в качестве основной единицы 1 вольт, так как погрешность его воспроизведения равна 5·10 -8 В.

Единица термодинамической температуры – Кельвин (К)

Температура – это величина, характеризующая степень нагретости тела.

Со времени изобретения Галилеем Термометра измерение температуры основано на применении т ого или иного термометрического вещества, изменяющего свой объем или давление при изменении температуры.

Все известные температурные шкалы (Фаренгейта, Цельсия, Кельвина) основаны на каких-либо реперных точках, которым приписываются различные числовые значения.

Кельвин и независимо от него Менделеев высказали соображения о целесообразности построения шкалы температур по одной реперной точке, в качестве которой была взята «тройная точка воды», являющаяся точкой равновесия воды в твердой, жидкой и газообразной фазах. Она в настоящее время может быть воспроизведена в специальных сосудах с погрешностью не более 0,0001 градуса Цельсия. Нижней границей температурного интервала служит точка абсолютного нуля. Если этот интервал разбить на 273,16 частей, то получиться единица измерения называемая Кельвином.

Кельвин – это 1/273,16 часть термодинамической температуры тройной точки воды.

Для обозначения температуры, выраженной в Кельвинах, принят символ Т, а в градусах Цельсия t. Переход производится по формуле:T=t+ 273,16. Градус Цельсия равен одному Кельвину (обе единицы имеют право на использование).

Единица силы света – кандела (кд)

Сила света –это величина, характеризующая свечение источника в некотором направлении, равна отношению светового потока к малому телесному углу, в котором он распространяется.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 (Вт/ср) (Ватт на стерадиан).

Погрешность воспроизведения единицы эталоном 1·10 -3 кд.

Единица количества вещества – моль.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде С12 массой 0,012кг.

При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами или специфицированными группами частиц.

Дополнительные единицы СИ

Международная система включает в себя две дополнительные единицы – для измерения плоского и телесного углов. Они не могут быть основными, так как являются безразмерными величинами. Присвоение углу самостоятельной размерности привело бы к необходимости изменений уравнений механики, относящихся к вращательному и криволинейному движению. Вместе с тем они не являются производными, так как не зависят от выбора основных единиц. Поэтому указанные единицы включены в СИ в качестве дополнительных, необходимых для образования некоторых производных единиц – угловой скорости, углового ускорения и т.п.

Единица плоского угла – радиан (рад)

Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Государственный первичный эталон радиана состоит из 36-гранной призмы и эталонной угломерной автоколлимационной установки с ценой деления отсчетных устройств 0,01’’. Воспроизведение единицы плоского угла осуществляется методом калибровки, исходя из того, что сумма всех центральных углов многогранной призмы равна 2π рад.

Единица телесного угла – стерадиан (ср)

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Измеряют телесный угол путем определения плоских углов при вершине конуса. Телесному углу 1ср соответствует плоский угол 65 0 32’. Для пересчета пользуются формулой:

где Ω – телесный угол в ср; α – плоский угол при вершине в градусах.

Телесному углу π соответствует плоский угол 120 0 , а телесному углу 2π – плоский угол 180 0 .

Обычно углы измеряют все-таки в градусах – это удобнее.

Преимущества СИ

    Она является универсальной, то есть охватывает все области измерений. С её внедрением можно отказаться от всех других систем единиц.

    Она является когерентной, то есть системой, в которой производные единицы всех величин получаются с помощью уравнений с числовыми коэффициентами, равными безразмерной единице (система является связанной и согласованной).

    Единицы в системе унифицированы (вместо ряда единиц энергии и работы: килограм-сила-метр, эрг, калория, киловатт-час, электрон-вольт и др. – одна единица для измерения работы и всех видов энергии – джоуль).

    Осуществляется четкие разграничение единиц массы и силы (кг и Н).

Недостатки СИ

    Не все единицы имеют удобный для практического использования размер: единица давления Па – очень маленькая величина; единица электрической емкости Ф – очень большая величина.

    Неудобство измерения углов в радианах (градусы воспринимаются легче)

    Многие производные величины не имеют пока собственных названий.

Таким образом, принятие СИ является очередным и очень важным шагом в развитии метрологии, шагом вперед в совершенствовании систем единиц физических величин.

Основные единицы СИ
Единица Обозначение Величина Определение Исторические происхождения / Обоснование
Метр м Длина «Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.»
17я Конференция по мерам и весам (1983г, Резолюция 1)
1 ⁄ 10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа .
Килограмм кг Масса «Килограмм есть единица массы, равная массе международного прототипа килограмма»
3я Конференция по мерам и весам (1901г)
Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря .
Секунда с Время «Секунда это - интервал времени, равный 9 192 631 770 периодам излучения , соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 »
13я Конференция по мерам и весам (1967/68г, Резолюция 1)
«В покое при 0 К при отсутствии возмущения внешними полями.»
(Добавлено в 1997году)
День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.
Секунда это - 1 ⁄ (24 × 60 × 60) часть Дня
Ампер А Сила тока «Ампер - это сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2·10 −7 ньютонов на каждый метр длины проводника.»
9я Конференция по мерам и весам(1948г)
Кельвин К Термодинамическая Температура «Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды .»
13th Конференция по мерам и весам (1967/68г, Резолюция 4)
"В обязательном Техническом приложении к тексту МТШ-90 Консультативный комитет по термометрии в 2005 г. установил требования к изотопному составу воды при реализации температуры тройной точки воды.
Шкала Кельвина использует тот же шаг градуса, что и шкала Цельсия , но 0 градусов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15 : °C = - 273,15
Моль моль Количество вещества «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц»
14я Конференция по мерам и весам (1971г, Резолюция 3)
Кандела кд Сила света «равна силе света , испускаемого в заданном направлении источником монохроматического излучения частотой 540·10 12 герц , энергетическая сила света которого в этом направлении составляет (1/683) Вт /ср .»
16я Конференция по мерам и весам (1979, Резолюция 3)

Будущие изменения

В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро .

В пояснительной записке, адресованной CIPM, в октябре 2009 года, президент консультативного совета CIPM по единицам перечислил неопределенности физических фундаментальных констант при использовании текущих определений и тех, какими эти неопроеделенности станут при использовании новых предложенных определений единиц. Он рекомендовал CIPM принять предложенные изменения в «определении килограмма , ампера , кельвина и моля , чтобы они выражались через величины фундаментальных констант h , e , k , и N A ».

См. также

  • Константа (физика)

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Основные единицы СИ" в других словарях:

    основные единицы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN basic units …

    Основные единицы системы

    основные единицы системы - Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц. Примечание Определения и процедуры воспроизведения некоторых основных единиц могут опираться на … Справочник технического переводчика

    Основные единицы Международной системы единиц (СИ) - Таблица А.1 Наименование величины Единица величины Наименование Обозначение международное русское длина метр m м масса килограмм kg кг время секунда s с сила электрического … Словарь-справочник терминов нормативно-технической документации

    Основные единицы системы измерений - Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц. Примечание. Определения и процедуры воспроизведения некоторых основных единиц могут опираться… … Официальная терминология

    основные единицы речи - Элементы, выделяемые в линейном речевом потоке и являющиеся реализацией (вариантами) тех или иных языковых единиц … Словарь лингвистических терминов Т.В. Жеребило

    - (Systéme International, SI) | | | Обозначение | | Физическая величина | Наимено… … Энциклопедический словарь

    ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН, единицы измерения, используемые для измерениях физических величин. В определении единицы физической величины необходимо задать эталон физической величины и способ его сравнения с величиной при измерении. Например,… … Научно-технический энциклопедический словарь

    Основные - 1. Основные положения системы сельской телефонной связи. М., ЦНИИС, 1974. 145 с. Источник: Руководство: Руководство по проектированию сети электросвязи в сельской местности 16. Основные положения по учету труда и заработной платы в… … Словарь-справочник терминов нормативно-технической документации

    Величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… … Энциклопедия Кольера

Книги

  • Единицы физических величин в энергетике. Точность воспроизведения и передачи. Справочное пособие , Л. Д. Олейникова , Приведены основные метрологические понятия и термины используемые для характеристики средств и методов измерений. Даны определения единиц физических величин, ихсоотношения и обозначения… Категория: Электроэнергетика. Электротехника Издатель:

С 1963 г. в СССР (ГОСТ 9867-61 «Международная система единиц») с целью унификации единиц измерения во всех областях науки и техники рекомендована для практического использования международная (интернациональная) система единиц (СИ, SI) - это система единиц измерения физических величин, принятая XI Генеральной конференцией по мерам и весам в 1960 г. В основу ее положены 6 основных единиц (длина, масса, время, сила электрического тока, термодинамическая температура и сила света), а также 2 дополнительные единицы (плоский угол, телесный угол); все остальные единицы, приводимые в таблице, являются их производными. Принятие единой для всех стран международной системы единиц призвано устранить трудности, связанные с переводами численных значений физических величин, а также различных констант из какой-либо одной, действующей в настоящее время системы (СГС, МКГСС, МКС А и т. д.), в другую.

Наименование величины Единицы измерения; значения в системе СИ Обозначения
русское международное
I. Длина, масса, объем, давление, температура
Метр - мера длины, численно равная длине международного эталона метра; 1 м=100 см (1·10 2 см)=1000 мм (1·10 3 мм)
м m
Сантиметр = 0,01 м (1·10 -2 м)=10 мм см cm
Миллиметр = 0,001 м(1·10 -3 м) = 0,1 см=1000 мк (1·10 3 мк) мм mm
Микрон (микрометр) = 0,001 мм (1·10 -3 мм) =
0, 0001 см (1·10 -4 см)= 10 000
мк μ
Ангстрем=одной десятимиллиардной метра (1·10 -10 м) или одной стомиллионной сантиметра (1·10 -8 см) Å Å
Масса Килограмм - основная единица массы в метрической системе мер и системе СИ, численно равная массе международного эталона килограмма; 1 кг=1000 г
кг kg
Грамм=0,001 кг (1·10 -3 кг)
г g
Тонна= 1000 кг (1·10 3 кг) т t
Центнер=100 кг (1·10 2 кг)
ц
Карат - внесистемная единица массы, численно равная 0,2 г ct
Гамма=одной миллионной грамма (1·10 -6 г) γ
Объем Литр=1,000028 дм 3 = 1,000028·10 -3 м 3 л l
Давление Физическая, или нормальная, атмосфера - давление, уравновешиваемое ртутным столбом высотой 760 мм при температуре 0°= 1,033 ат= = 1,01·10 -5 н/м 2 =1,01325 бар= 760 тор= 1, 033 кгс/см 2
атм atm
Техническая атмосфера - давление, равное 1 кгс/смг = 9,81·10 4 н/м 2 =0,980655 бар =0,980655·10 6 дин/см 2 = 0, 968 атм= 735 тор ат at
Миллиметр ртутного столба= 133,32 н/м 2 мм рт. ст. mm Hg
Тор - наименование внесистемной единицы измерения давления, равное 1 мм рт. ст.; дано в честь итальянского ученого Э. Торричелли тор
Бар - единица атмосферного давления = 1·10 5 н/м 2 = 1·10 6 дин/см 2 бар bar
Давление (звука) Бар-единица звукового давления (в акустике): бар - 1 дин/см 2 ; в настоящее время в качестве единицы звукового давления рекомендована единица со значением 1 н/м 2 = 10 дин/см 2
бар bar
Децибел - логарифмическая единица измерения уровня избыточного звукового давления, равная 1/10 единицы измерения избыточного давления- бела дБ db
Температура Градус Цельсия; температура в °К (шкала Кельвина), равна температуре в °С (шкала Цельсия) + 273,15 °С °С °С
II. Сила, мощность, энергия, работа, количество теплоты, вязкость
Сила Дина - единица силы в системе СГС(см-г-cек.), при которой телу с массой в 1 г сообщается ускорение, равное 1 см/сек 2 ; 1 дин- 1·10 -5 н дин dyn
Килограмм-сила- сила, сообщающая телу с массой 1 кг ускорение, равное 9,81 м/сек 2 ; 1кг=9,81 н=9,81·10 5 дин кГ, кгс
Мощность Лошадиная сила =735,5 Вт л. с. HP
Энергия Электрон-вольт - энергия, которую приобретает электрон при перемещении в электрическом поле в вакууме между точками с разностью потенциалов в 1 в; 1 эв= 1,6·10 -19 дж. Допускается применение кратных единиц: килоэлектрон-вольт (Кзв)=10 3 эв и мегаэлектрон-вольт (Мэв)= 10 6 эв. В современных энергию частиц измеряют в Бэв - миллиардах (биллионах) эв; 1 Бзв=10 9 эв
эв eV
Эрг=1·10 -7 дж; эрг также используется как единица измерения работы, численно равная работе, совершаемой силой в 1 дин на пути в 1 см эрг erg
Работа Килограмм-сила-метр (килограммометр) - единица работы, численно равная работе, совершаемой постоянной силой в 1 кГ при перемещении точки приложения этой силы на расстояние в 1 м по ее направлению; 1кГм=9,81 дж (одновременно кГм является мерой энергии) кГм, кгс·м kGm
Количество теплоты Калория - внесистемная единица измерения количества теплоты, равного количеству теплоты, необходимого для нагревания 1 г воды от 19,5 °С до 20,5 ° С. 1 кал=4,187 дж; распространена кратная единица килокалория (ккал, kcal), равная 1000 кал кал cal
Вязкость (динамическая) Пуаз - единица вязкости в системе единиц СГС; вязкость, при которой в слоистом потоке с градиентом скорости, равным 1 сек -1 на 1 см 2 поверхности слоя, действует сила вязкости в 1 дин; 1 пз = 0,1 н·сек/м 2 пз P
Вязкость (кинематическая) Стокс - единица кинематической вязкости в системе СГС; равна величине вязкости жидкости, имеющей плотность 1 г/см 3 , оказывающей сопротивление силой в 1 дин взаимному перемещению двух слоев жидкости площадью 1 см 2 , находящихся на расстоянии 1 см друг от друга и перемещающихся друг относительно друга со скоростью 1 см в сек ст St
III. Магнитный поток, магнитная индукция, напряженность магнитного поля, индуктивность, электрическая емкость
Магнитный поток Максвелл - единица измерения магнитного потока в системе СГС; 1 мкс равен магнитному потоку, проходящему через площадку в 1 см 2 , расположенную перпендикулярно к линиям индукции магнитного поля, при индукции, равной 1 гс; 1 мкс= 10 -8 вб (вебера) - единицы магнитного тока в системе СИ мкс Mx
Магнитная индукция Гаусс - единица измерения в системе СГС; 1 гс есть индукция такого поля, в котором прямолинейный проводник длиной 1 см, расположенный перпендикулярно вектору поля, испытывает силу в 1 дин, если по этому проводнику протекает ток в 3·10 10 единиц СГС; 1 гс=1·10 -4 тл (тесла) гс Gs
Напряженность магнитного поля Эрстед - единица напряженности магнитного поля в системе CГC; за один эрстед (1 э) принята напряженность в такой точке поля, в которой на 1 электромагнитную единицу количества магнетизма действует сила в 1 дину (дин);
1 э=1/4π·10 3 а/м
э Oe
Индуктивность Сантиметр - единица индуктивности в системе СГС; 1 см= 1·10 -9 гн (генри) см cm
Электрическая емкость Сантиметр - единица емкости в системе СГС = 1·10 -12 ф (фарады) см cm
IV. Сила света, световой поток, яркость, освещенность
Сила света Свеча - единица силы света, Значение которой принимается таким, чтобы яркость полного излучателя при температуре затвердевания платины была равна 60 св на 1 см 2 св cd
Световой поток Люмен - единица светового потока; 1 люмен (лм) излучается в пределах телесного угла в 1 стер точечным источником света, обладающим во всех направлениях силой света в 1 св лм lm
Люмен-секунда - соответствует световой энергии, образуемой световым потоком в 1 лм, излучаемым или воспринимаемым за 1 сек лм·сек lm·sec
Люмен-час равен 3600 люмен-секундам лм·ч lm·h
Яркость Стильб- единица яркости в системе СГС; соответствует яркости плоской поверхности, 1 см 2 которой дает в направлении, перпендикулярном к этой поверхности, силу света, равную 1 се; 1 сб=1·10 4 нт (нит) (единица яркости в системе СИ) сб sb
Ламберт - внесистемная единица яркости, производная от стильба; 1 ламберт=1/π ст= 3193 нт
Апостильб= 1/π св/м 2
Освещенность Фот - единица освещенности в системе СГСЛ (см-г-сек-лм); 1 фот соответствует освещенности поверхности в 1 см 2 равномерно распределенным световым потоком в 1 лм; 1 ф=1·10 4 лк (люкс) ф ph
V. Интенсивность радиоактивного излучения и дозы
Интенсивность Кюри - основная единица измерения интенсивности радиоактивного излучения, кюри соответствующая 3,7·10 10 распадам в 1 сек. любого радиоактивного изотопа
кюри C или Cu
милликюри= 10 -3 кюри, или 3,7·10 7 актов радиоактивного распада в 1 сек. мкюри mc или mCu
микрокюри= 10 -6 кюри мккюри μ C или μ Cu
Доза Рентген - количество (доза) рентгеновых или γ -лучей, которое в 0,001293 г воздуха (т. е. в 1 см 3 сухого воздуха при t° 0° и 760 мм рт. ст.) вызывает образование ионов, несущих одну электростатическую единицу количества электричества каждого знака; 1 р вызывает образование 2,08·10 9 пар ионов в 1 см 3 воздуха р r
миллирентген = 10 -3 p мр mr
микрорентген = 10 -6 p мкр μr
Рад - единица поглощенной дозы любого ионизирующего излучения равна рад 100 эрг на 1 г облучаемой среды; при ионизации воздуха рентгеновыми или γ-лучами 1 р равен 0,88 рад, а при ионизации тканей практически 1 р равен 1 рад рад rad
Бэр (биологический эквивалент рентгена) - количество (доза) любого вида ионизирующих излучений, вызывающее такой же биологический эффект, как и 1 р (или 1 рад) жестких рентгеновых лучей. Неодинаковый биологический эффект при равной ионизации разными видами излучений привел к необходимости введения еще одного понятия: относительной биологической эффективности излучений -ОБЭ; зависимость между дозами (Д) и безразмерным коэффициентом (ОБЭ) выражается как Д бэр =Д рад ·ОБЭ, где ОБЭ=1 для рентгеновых, γ-лучей и β -лучей и ОБЭ=10 для протонов до 10 Мэв, быстрых нейтронов и α-ча стиц естественных (по рекомендации Международного конгресса радиологов в Копенгагене, 1953) бэр, рэб rem

Примечание. Кратные и дольные единицы измерения, за исключением единиц времени и угла, образуются путем их умножения на соответствующую степень числа 10, а их названия присоединяются к наименованиям единиц измерения. Не допускается применение двух приставок к наименованию единицы. Например, нельзя писать миллимикроватт (ммквт) или микромикрофарада (ммф), а необходимо писать нановатт (нвт) или пикофарада (пф). Не следует применять приставок к наименованиям таких единиц, которые обозначают кратную или дольную единицу измерения (например, микрон). Для выражения продолжительности процессов и обозначения календарных дат событий допускается применение кратных единиц времени.

Важнейшие единицы международной системы единиц (СИ)

Основные единицы
(длина, масса, температура, время, сила электрического тока, сила света)

Наименование величины Обозначения
русское международное
Длина Метр - длина, равная 1650763,73 длин волн излучения в вакууме, соответствующая переходу между уровнями 2р 10 и 5d 5 криптона 86 *
м m
Масса Килограмм - масса, соответствующая массе международного эталона килограмма кг kg
Время Секунда - 1/31556925,9747 часть тропического года (1900) ** сек S, s
Сила электрического тока Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2·10 -7 н на каждый метр длины а A
Сила света Свеча - единица силы света, значение которой принимается таким, чтобы яркость полного (абсолютно черного) излучателя при температуре затвердевания платины была равна 60 се на 1 см 2 *** св cd
Температура (термодинамическая) Градус Кельвина (шкала Кельвина) - единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды**** установлено значение 273,16° К °К °K
* Т. е. метр равен указанному числу волн излучения с длиной волны 0,6057 мк, полученного от специальной лампы и соответствующего оранжевой линии спектра нейтрального газа криптона. Такое определение единицы длины позволяет воспроизводить метр с наибольшей точностью, а главное, в любой лаборатории, имеющей соответствующее оборудование. При этом отпадает необходимость в периодической проверке стандартного метра с его международным эталоном, хранящимся в Париже.
** Т. е. секунда равна указанной части интервала времени между двумя последовательными прохождениями Землей на орбите вокруг Солнца точки, соответствующей весеннему равноденствию. Это дает большую точность в определении секунды, чем определение ее как части суток, поскольку длительность суток меняется.
*** Т. е. за единицу принята сила света определенного эталонного источника, испускающего свет при температуре плавления платины. Прежний международный эталон свечи составляет 1,005 нового эталона свечи. Таким образом, в пределах обычной практической точности их значения можно считать совпадающими.
**** Тройная точка - температура таяния льда при наличии над ним насыщенного водяного пара.

Дополнительные и производные единицы

Наименование величины Единицы измерения; их определение Обозначения
русское международное
I. Плоский угол, телесный угол, сила, работа, энергия, количество теплоты, мощность
Плоский угол Радиан - угол между двумя радиусами круга, вырезающий на окружности рад дугу, длина которой равна радиусу рад rad
Телесный угол Стерадиан - телесный угол, вершина которого расположена в центре сферы стер и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы стер sr
Сила Ньютон- сила, под действием которой тело с массой в 1 кг приобретает ускорение, равное 1 м/сек 2 н N
Работа, энергия, количество теплоты Джоуль - работа, которую совершает действующая на тело постоянная сила в 1 н на пути в 1 м, пройденном телом в направлении действия силы дж J
Мощность Ватт - мощность, при которой за 1 сек. совершается работа в 1 дж Вт W
II. Количество электричества, электрическое напряжение, электрическое сопротивление, электрическая емкость
Количество электричества, электрический заряд Кулон - количество электричества, протекающее через поперечное сечение проводника в течение 1 сек. при силе постоянного тока в 1 а к C
Электрическое напряжение, разность электрических потенциалов, электродвижущая сила (ЭДС) Вольт - напряжение на участке электрической цепи, при прохождении через который количества электричества в 1 к совершается работа в 1 дж в V
Электрическое сопротивление Ом - сопротивление проводника, по которому при постоянном напряжении на концах в 1 в проходит постоянный ток в 1 а ом Ω
Электрическая емкость Фарада- емкость конденсатора, напряжение между обкладками которого меняется на 1 в при зарядке его количеством электричества в 1 к ф F
III. Магнитная индукция, поток магнитной индукции, индуктивность, частота
Магнитная индукция Тесла- индукция однородного магнитного поля, которое на участок прямолинейного проводника длиной в 1 м, помещенного перпендикулярно направлению поля, действует с силой в 1 н при прохождении по проводнику постоянного тока в 1 а тл T
Поток магнитной индукции Вебер - магнитный поток, создаваемый однородным полем с магнитной индукцией в 1 тл через площадку в 1 м 2 , перпендикулярную направлению вектора магнитной индукции вб Wb
Индуктивность Генри - индуктивность проводника (катушки), в котором индуктируется ЭДС в 1 в при изменении тока в нем на 1 а за 1 сек. гн H
Частота Герц - частота периодического процесса, у которого за 1 сек. совершается одно колебание (цикл, период) Гц Hz
IV. Световой поток, световая энергия, яркость, освещенность
Световой поток Люмен - световой поток, который дает внутри телесного угла в 1 стер точечный источник света в 1 св, излучающий одинаково во всех направлениях лм lm
Световая энергия Люмен-секунда лм·сек lm·s
Яркость Нит - ярность светящейся плоскости, каждый квадратный метр которой дает в направлении, перпендикулярном плоскости, силу света в 1 св нт nt
Освещенность Люкс - освещенность, создаваемая световым потоком в 1 лм при равномерном его распределении на площади в 1 м 2 лк lx
Количество освещения Люкс-секунда лк·сек lx·s